Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (137)2018 07 29.
Article in English | MEDLINE | ID: mdl-30102274

ABSTRACT

Sample preparation is a critical process in mass spectrometry (MS) analysis of carbohydrates. Although matrix-assisted laser desorption/ionization (MALDI) MS is the method of choice in carbohydrate analysis, poor ion signal and data reproducibility of carbohydrate samples continue to be severe problems. For quantitative analysis of carbohydrates, an effective analytical protocol providing superior data quality is necessary. This video demonstrates sample preparation protocols to improve signal intensity and minimize data variation of carbohydrates in MALDI-MS. After drying and crystallization of sample droplets, the crystal morphology is reformed by methanol before mass spectrometric analysis. The enhancement in carbohydrate signal is examined with MALDI imaging mass spectrometry (IMS). Experimental results show that crystal reformation adjusts crystalline structures and redistributes carbohydrate analytes. In comparison with the dried droplet preparation method in conventional MALDI-MS, reforming carbohydrate crystal morphologies with methanol shows significantly better signal intensity, ion image distribution, and data stability. Since the protocols demonstrated herein do not involve changes in sample composition, they are generally applicable to various carbohydrates and matrixes.


Subject(s)
Carbohydrates/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Specimen Handling
2.
Anal Chim Acta ; 994: 49-55, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29126468

ABSTRACT

Carbohydrate analysis is challenging due to lack of sensitive detection and efficient separation methods. Although matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a sensitive tool, the low ionization efficiency of carbohydrates makes mass analyses inefficient. This work systematically examines the correlation between MALDI-MS sensitivity and carbohydrate sample morphology. Depending on the properties of the matrix used, the morphology changes through sample recrystallization after drying or imposition of hydrodynamic flows during droplet drying. Observation shows that amorphous solids and finer crystals offer higher carbohydrate sensitivity and spatial homogeneity than larger crystals. Clear evidences of an inverse correlation between sensitivity and crystal size are obtained when various kinds of carbohydrates are mixed with different matrixes. Similar experiments on proteins and peptides showed a negative or negligible effect. The result serves as a general guideline for improving efficiency in routine carbohydrate analysis.

3.
J Vis Exp ; (116)2016 10 28.
Article in English | MEDLINE | ID: mdl-27842361

ABSTRACT

This protocol demonstrates a simple sample preparation to reduce spatial heterogeneity in ion signals during matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The heterogeneity of ion signals is a severe problem in MALDI, which results in poor data reproducibility and makes MALDI unsuitable for quantitative analysis. By regulating sample plate temperature during sample preparation, thermal-induced hydrodynamic flows inside droplets of sample solution are able to reduce the heterogeneity problem. A room-temperature sample preparation chamber equipped with a temperature-regulated copper base block that holds MALDI sample plates facilitates precise control of the sample drying condition. After drying of sample droplets, the temperature of sample plates is returned to room temperature and removed from the chamber for subsequent mass spectrometric analysis. The areas of samples are examined with MALDI-imaging mass spectrometry to obtain the spatial distribution of all components in the sample. In comparison with the conventional dried-droplet method that prepares samples under ambient conditions without temperature control, the samples prepared with the method demonstrated herein show significantly better spatial distribution and signal intensity. According to observations using carbohydrate and peptide samples, decreasing substrate temperature while maintaining the surroundings at ambient temperature during the drying process can effectively reduce the heterogeneity of ion signals. This method is generally applicable to various combinations of samples and matrices.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Carbohydrates , Peptides , Reproducibility of Results
4.
Philos Trans A Math Phys Eng Sci ; 374(2079)2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27644968

ABSTRACT

Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed.This article is part of the themed issue 'Quantitative mass spectrometry'.

5.
Eur J Mass Spectrom (Chichester) ; 22(3): 145-50, 2016.
Article in English | MEDLINE | ID: mdl-27553737

ABSTRACT

The trimethylsilyl (TMS) derivative is one of the most widely utilized derivatives for analyzing polar compounds by gas chromatography. An ion two mass units higher than the protonated molecular ion was observed in analyzing TMS-monocarboxylic acids by using gas chromatography electrospray ionization mass spectrometry (GC-ESI/MS). The structure of the M + 2 compound was investigated using tandem mass spectrometry and high-resolution mass spectrometry. The results suggest that one methyl group bound to the silicon atom was replaced by a hydroxyl group during the ESI process. One possible mechanism for the formation of the M + 2 compound is proposed. This observation suggests the possibility of synthesizing an organic compound by using ESI.

6.
J Am Soc Mass Spectrom ; 27(8): 1314-21, 2016 08.
Article in English | MEDLINE | ID: mdl-27126469

ABSTRACT

This work demonstrates a method to prepare homogeneous distributions of analytes to improve data reproducibility in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Natural-air drying processes normally result in unwanted heterogeneous spatial distributions of analytes in MALDI crystals and make quantitative analysis difficult. This study demonstrates that inducing Marangoni flows within drying droplets can significantly reduce the heterogeneity problem. The Marangoni flows are accelerated by changing substrate temperatures to create temperature gradients across droplets. Such hydrodynamic flows are analyzed semi-empirically. Using imaging mass spectrometry, changes of heterogeneity of molecules with the change of substrate temperature during drying processes are demonstrated. The observed heterogeneities of the biomolecules reduce as predicted Marangoni velocities increase. In comparison to conventional methods, drying droplets on a 5 °C substrate while keeping the surroundings at ambient conditions typically reduces the heterogeneity of biomolecular ions by 65%-80%. The observation suggests that decreasing substrate temperature during droplet drying processes is a simple and effective means to reduce analyte heterogeneity for quantitative applications. Graphical Abstract ᅟ.

SELECTION OF CITATIONS
SEARCH DETAIL
...