Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Pharmacol Ther ; 45(3): 291-300, 2022 May.
Article in English | MEDLINE | ID: mdl-35348230

ABSTRACT

A pharmacokinetic/pharmacodynamic (PK/PD) model was developed to optimize the dosing regimen of enrofloxacin (EN) against Glaesserella parasuis in pigs. EN (2.5 mg/kg) was administered intramuscularly to eight healthy pigs and eight pigs that were experimentally infected with G. parasuis SW124. Blood samples were collected at predetermined time points. Plasma EN concentrations were determined, and the main PK parameters were estimated. The PD of EN against G. parasuis SW124 was also investigated in vitro and ex vivo. The dynamic behaviour of EN in pigs was consistent with a one-compartment model. Significant differences were observed between healthy and infected pigs in the area under the curve (AUC) (3.58 ± 0.94 and 5.39 ± 1.01 µg h/ml, respectively) and the systemic clearance (CL) (736.32 ± 171.46 and 479.36 ± 96.81 ml/h/kg, respectively), suggesting that the pathogenicity of G. parasuis SW124 to pigs might alter the PK profile of EN, and therefore should be considered in dose optimization. Both the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 0.125 µg/ml in tryptone soya broth (TSB) medium or plasma. The mutant prevention concentration (MPC) was 0.6 µg/ml. EN inhibited or killed G. parasuis SW124 in a concentration-dependent manner. The targeted endpoints of AUC24 h /MIC for bacteriostasis, bactericidal action, and eradication were 5.10, 7.34, and 8.65 h and 5.91, 9.01, and 10.90 h in healthy and infected pigs, respectively. The optimal doses were 3.58-6.08 mg/kg in healthy pigs and 2.71-4.99 mg/kg in infected pigs from the point of view of preventing drug resistance.


Subject(s)
Anti-Bacterial Agents , Haemophilus parasuis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Area Under Curve , Enrofloxacin , Microbial Sensitivity Tests/veterinary , Swine
2.
Front Microbiol ; 10: 2584, 2019.
Article in English | MEDLINE | ID: mdl-31798551

ABSTRACT

The quorum sensing (QS) system controls bacterial biofilm formation, which is highly related to the virulence and resistance of pathogens. In the present study, the effect of two traditional Chinese medicine (TCM) monomers, berberine and matrine, on biofilm formation and QS-related gene expression of antimicrobial-resistant (AMR) Escherichia coli strains was investigated by laser scanning confocal microscopy (LSCM) observation and real-time PCR. The results indicated a roughly positive relationship between biofilm formation ability and antimicrobial resistance. LSCM observation showed that berberine and matrine inhibited biofilm formation of AMR E. coli strains at 1/2 minimal inhibitory concentration (MIC) (1/2 MIC berberine at OD630: 0.1020; 1/2 MIC matrine: OD630: 0.1045); furthermore, abnormal cell morphology such as rounded and elongated cells was also observed. This finding was consistent with the downregulation of QS-related genes: luxS, pfS, sdiA, hflX, motA, and fliA. At 1/2 MIC and 1/4 MIC concentrations of berberine, a significant downregulation of luxS, pfS, hflX, ftsQ, and ftsE was observed. The results indicate that berberine and matrine can inhibit biofilm formation by inhibiting the QS system and that berberine is more effective than matrine.

SELECTION OF CITATIONS
SEARCH DETAIL
...