Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncol ; 32(1): 200762, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596285

ABSTRACT

Circulating tumor cells (CTCs) are the seeds of distant metastases of malignant tumors and are associated with malignancy and risk of metastasis. However, tumor cells undergo epithelial-mesenchymal transition (EMT) during metastasis, leading to the emergence of different types of CTCs. Real-time dynamic molecular and functional typing of CTCs is necessary to precisely guide personalized treatment. Most CTC detection systems are based on epithelial markers that may fail to detect EMT CTCs. Therefore, it is clinically important to identify new markers of different CTC types. In this study, bioinformatics analysis and experimental assays showed that trophoblast cell surface antigen 2 (TROP2), a target molecule for advanced palliative treatment of triple-negative breast cancer (TNBC), was highly expressed in TNBC tissues and tumor cells. Furthermore, TROP2 can promote the migration and invasion of TNBC cells by upregulating EMT markers. The specificity and potential of TROP2 as an EMT-associated marker of TNBC CTCs were evaluated by flow cytometry, immunofluorescence, spiking experiments, and a well-established CTC assay. The results indicated that TROP2 is a potential novel CTC marker associated with EMT, providing a basis for more efficacious markers that encompass CTC heterogeneity in patients with TNBC.

2.
Genes Dis ; 11(4): 101041, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38560503

ABSTRACT

Pyruvate dehydrogenase kinase 1 (PDK1) phosphorylates the pyruvate dehydrogenase complex, which inhibits its activity. Inhibiting pyruvate dehydrogenase complex inhibits the tricarboxylic acid cycle and the reprogramming of tumor cell metabolism to glycolysis, which plays an important role in tumor progression. This study aims to elucidate how PDK1 promotes breast cancer progression. We found that PDK1 was highly expressed in breast cancer tissues, and PDK1 knockdown reduced the proliferation, migration, and tumorigenicity of breast cancer cells and inhibited the HIF-1α (hypoxia-inducible factor 1α) pathway. Further investigation showed that PDK1 promoted the protein stability of HIF-1α by reducing the level of ubiquitination of HIF-1α. The HIF-1α protein levels were dependent on PDK1 kinase activity. Furthermore, HIF-1α phosphorylation at serine 451 was detected in wild-type breast cancer cells but not in PDK1 knockout breast cancer cells. The phosphorylation of HIF-1α at Ser 451 stabilized its protein levels by inhibiting the interaction of HIF-1α with von Hippel-Lindau and prolyl hydroxylase domain. We also found that PDK1 enhanced HIF-1α transcriptional activity. In summary, PDK1 enhances HIF-1α protein stability by phosphorylating HIF-1α at Ser451 and promotes HIF-1α transcriptional activity by enhancing the binding of HIF-1α to P300. PDK1 and HIF-1α form a positive feedback loop to promote breast cancer progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...