Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 41(12): 1576-1586, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33037404

ABSTRACT

Type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) regulates the intracellular Ca2+ release from endoplasmic reticulum in human embryonic stem cells (hESCs), cardiovascular progenitor cells (CVPCs), and mammalian cardiomyocytes. However, the role of IP3R2 in human cardiac development is unknown and its function in mammalian cardiomyocytes is controversial. hESC-derived cardiomyocytes have unique merits in disease modeling, cell therapy, and drug screening. Therefore, understanding the role of IP3R2 in the generation and function of human cardiomyocytes would be valuable for the application of hESC-derived cardiomyocytes. In the current study, we investigated the role of IP3R2 in the differentiation of hESCs to cardiomyocytes and in the hESC-derived cardiomyocytes. By using IP3R2 knockout (IP3R2KO) hESCs, we showed that IP3R2KO did not affect the self-renewal of hESCs as well as the differentiation ability of hESCs into CVPCs and cardiomyocytes. Furthermore, we demonstrated the ventricular-like myocyte characteristics of hESC-derived cardiomyocytes. Under the α1-adrenergic stimulation by phenylephrine (10 µmol/L), the amplitude and maximum rate of depolarization of action potential (AP) were slightly affected in the IP3R2KO hESC-derived cardiomyocytes at differentiation day 90, whereas the other parameters of APs and the Ca2+ transients did not show significant changes compared with these in the wide-type ones. These results demonstrate that IP3R2 has minimal contribution to the differentiation and function of human cardiomyocytes derived from hESCs, thus provide the new knowledge to the function of IP3R2 in the generation of human cardiac lineage cells and in the early cardiomyocytes.


Subject(s)
Cell Differentiation/physiology , Human Embryonic Stem Cells/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Myocytes, Cardiac/metabolism , Down-Regulation , Humans , Receptors, Adrenergic, alpha-1/metabolism
2.
Acta Pharmacol Sin ; 27(7): 848-52, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16787568

ABSTRACT

AIM: Ca2+ release from the endoplasmic reticulum (ER) is an integral component of neuronal Ca2+ signaling. The present study is to investigate properties of local Ca2+ release events in superior cervical ganglion (SCG) neurons. METHODS: Primary cultured SCG neurons were prepared from neonatal rats (P3-P7). Low concentration of caffeine was used to induce Ca2+ release from the ER Ca2+ store, and intracellular Ca2+ was recorded by high-resolution line scan confocal imaging and the Ca2+ indicator Fluo-4. RESULTS: Two populations of local Ca2+ release events with distinct temporal characteristics were evoked by 1.5 mmol/L caffeine near the surface membrane in the soma and the neurites of SCG neurons. Brief events similar to classic Ca2+ sparks lasted a few hundreds of milliseconds, whereas long-lasting events displayed duration up to tens of seconds. Typical somatic and neurite sparks were of 0.3- and 0.52-fold increase in local Fluo-4 fluorescence, respectively. Typical Ca2+ glows were brighter (deltaF/F0 approximately 0.6), but were highly confined in space. The half maximum of full duration of neurite sparks was much longer than those in the soma (685 vs 381 ms). CONCLUSION: Co-existence of Ca2+ sparks and Ca2+ glows in SCG neurons indicates distinctive local regulation of Ca2+ release kinetics. The local Ca2+ signals of variable, site-specific temporal length may bear important implications in encoding a 'memory' of the trigger signal.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Superior Cervical Ganglion/metabolism , Animals , Animals, Newborn , Caffeine/antagonists & inhibitors , Cells, Cultured , Neurons/metabolism , Rats , Superior Cervical Ganglion/cytology , Thapsigargin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...