Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Planta ; 260(1): 3, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767800

ABSTRACT

MAIN CONCLUSION: Transcription factors MhMYB1 and MhMYB2 correlate with monoterpenoid biosynthesis pathway in l-menthol chemotype of Mentha haplocalyx Briq, which could affect the contents of ( -)-menthol and ( -)-menthone. Mentha haplocalyx Briq., a plant with traditional medicinal and edible uses, is renowned for its rich essential oil content. The distinct functional activities and aromatic flavors of mint essential oils arise from various chemotypes. While the biosynthetic pathways of the main monoterpenes in mint are well understood, the regulatory mechanisms governing different chemotypes remain inadequately explored. In this investigation, we identified and cloned two transcription factor genes from the M. haplocalyx MYB family, namely MhMYB1 (PP236792) and MhMYB2 (PP236793), previously identified by our research group. Bioinformatics analysis revealed that MhMYB1 possesses two conserved MYB domains, while MhMYB2 contains a conserved SANT domain. Yeast one-hybrid (Y1H) analysis results demonstrated that both MhMYB1 and MhMYB2 interacted with the promoter regions of MhMD and MhPR, critical enzymes in the monoterpenoid biosynthesis pathway of M. haplocalyx. Subsequent virus-induced gene silencing (VIGS) of MhMYB1 and MhMYB2 led to a significant reduction (P < 0.01) in the relative expression levels of MhMD and MhPR genes in the VIGS groups of M. haplocalyx. In addition, there was a noteworthy decrease (P < 0.05) in the contents of ( -)-menthol and ( -)-menthone in the essential oil of M. haplocalyx. These findings suggest that MhMYB1 and MhMYB2 transcription factors play a positive regulatory role in ( -)-menthol biosynthesis, consequently influencing the essential oil composition in the l-menthol chemotype of M. haplocalyx. This study serves as a pivotal foundation for unraveling the regulatory mechanisms governing monoterpenoid biosynthesis in different chemotypes of M. haplocalyx.


Subject(s)
Gene Expression Regulation, Plant , Mentha , Menthol , Monoterpenes , Plant Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Mentha/genetics , Mentha/metabolism , Monoterpenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Menthol/metabolism , Oils, Volatile/metabolism , Biosynthetic Pathways/genetics , Promoter Regions, Genetic/genetics
2.
BMC Biotechnol ; 24(1): 20, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637734

ABSTRACT

BACKGROUND: Obtaining high-quality chloroplast genome sequences requires chloroplast DNA (cpDNA) samples that meet the sequencing requirements. The quality of extracted cpDNA directly impacts the efficiency and accuracy of sequencing analysis. Currently, there are no reported methods for extracting cpDNA from Erigeron breviscapus. Therefore, we developed a suitable method for extracting cpDNA from E. breviscapus and further verified its applicability to other medicinal plants. RESULTS: We conducted a comparative analysis of chloroplast isolation and cpDNA extraction using modified high-salt low-pH method, the high-salt method, and the NaOH low-salt method, respectively. Subsequently, the number of cpDNA copies relative to the nuclear DNA (nDNA ) was quantified via qPCR. As anticipated, chloroplasts isolated from E. breviscapus using the modified high-salt low-pH method exhibited intact structures with minimal cell debris. Moreover, the concentration, purity, and quality of E. breviscapus cpDNA extracted through this method surpassed those obtained from the other two methods. Furthermore, qPCR analysis confirmed that the modified high-salt low-pH method effectively minimized nDNA contamination in the extracted cpDNA. We then applied the developed modified high-salt low-pH method to other medicinal plant species, including Mentha haplocalyx, Taraxacum mongolicum, and Portulaca oleracea. The resultant effect on chloroplast isolation and cpDNA extraction further validated the generalizability and efficacy of this method across different plant species. CONCLUSIONS: The modified high-salt low-pH method represents a reliable approach for obtaining high-quality cpDNA from E. breviscapus. Its universal applicability establishes a solid foundation for chloroplast genome sequencing and analysis of this species. Moreover, it serves as a benchmark for developing similar methods to extract chloroplast genomes from other medicinal plants.


Subject(s)
Genome, Chloroplast , Plants, Medicinal , DNA, Chloroplast/genetics , Plants, Medicinal/genetics , Chloroplasts/genetics , Chromosome Mapping , Phylogeny
3.
BMC Plant Biol ; 24(1): 133, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395770

ABSTRACT

BACKGROUND: 1-Deoxynojirimycin (DNJ), the main active ingredient in mulberry leaves, with wide applications in the medicine and food industries due to its significant functions in lowering blood sugar, and lipids, and combating viral infections. Cytochrome P450 is a key enzyme for DNJ biosynthesis, its activity depends on the electron supply of NADPH-cytochrome P450 reductases (CPRs). However, the gene for MaCPRs in mulberry leaves remains unknown. RESULTS: In this study, we successfully cloned and functionally characterized two key genes, MaCPR1 and MaCPR2, based on the transcriptional profile of mulberry leaves. The MaCPR1 gene comprised 2064 bp, with its open reading frame (ORF) encoding 687 amino acids. The MaCPR2 gene comprised 2148 bp, and its ORF encoding 715 amino acids. The phylogenetic tree indicates that MaCPR1 and MaCPR2 belong to Class I and Class II, respectively. In vitro, we found that the recombinant enzymes MaCPR2 protein could reduce cytochrome c and ferricyanide using NADPH as an electron donor, while MaCPR1 did not. In yeast, heterologous co-expression indicates that MaCPR2 delivers electrons to MaC3'H hydroxylase, a key enzyme catalyzing the production of chlorogenic acid from 3-O-p-coumaroylquinic acid. CONCLUSIONS: These findings highlight the orchestration of hydroxylation process mediated by MaCPR2 during the biosynthesis of secondary metabolite biosynthesis in mulberry leaves. These results provided a foundational understanding for fully elucidating the DNJ biosynthetic pathway within mulberry leaves.


Subject(s)
1-Deoxynojirimycin , Morus , 1-Deoxynojirimycin/analysis , 1-Deoxynojirimycin/metabolism , Morus/genetics , NADP/metabolism , Biosynthetic Pathways , Phylogeny , Recombinant Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Amino Acids/metabolism , Plant Leaves/metabolism
4.
iScience ; 27(3): 109041, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38361626

ABSTRACT

Patients with neurodegenerative diseases exhibit diminished basal forebrain (BF) volume compared to healthy individuals. However, it's uncertain whether this difference is consistent between sexes. It has been reported that BF volume moderately atrophies during aging, but the effect of sex on BF volume changes during the normal aging process remains unclear. In the cross-sectional study, we observed a significant reduction in BF volume in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) compared to Healthy Controls (HCs), especially in the Ch4 subregion. Notably, significant differences in BF volume between MCI and HCs were observed solely in the female group. Additionally, we identified asymmetrical atrophy in the left and right Ch4 subregions in female patients with AD. In the longitudinal analysis, we found that aging seemed to have a minimal impact on BF volume in males. Our study highlights the importance of considering sex as a research variable in brain science.

5.
Bioresour Technol ; 393: 130162, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065516

ABSTRACT

Biosynthesis of D-arabitol, a high value-added platform chemical, from renewable carbon sources provides a sustainable and eco-friendly alternative to the chemical industry. Here, a robust brewing yeast, Zygosaccharomyces rouxii, capable of naturally producing D-arabitol was rewired through genome sequencing-based metabolic engineering. The recombinant Z. rouxii obtained by reinforcing the native D-xylulose pathway, improving reductive power of the rate-limiting step, and inhibiting the shunt pathway, produced 73.61% higher D-arabitol than the parent strain. Subsequently, optimization of the fermentation medium composition for the engineered strain provided 137.36 g/L D-arabitol, with a productivity of 0.64 g/L/h in a fed-batch experiment. Finally, the downstream separation of D-arabitol from the complex fermentation broth using an ethanol precipitation method provided a purity of 96.53%. This study highlights the importance of D-xylulose pathway modification in D-arabitol biosynthesis, and pave a complete and efficient way for the sustainable manufacturing of this value-added compound from biosynthesis to preparation.


Subject(s)
Saccharomycetales , Xylulose , Zygosaccharomyces , Xylulose/metabolism , Glucose/metabolism , Sugar Alcohols/metabolism , Fermentation , Zygosaccharomyces/genetics , Zygosaccharomyces/metabolism
6.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38044469

ABSTRACT

Brain function changes affect cognitive functions in older adults, yet the relationship between cognition and the dynamic changes of brain networks during naturalistic stimulation is not clear. Here, we recruited the young, middle-aged and older groups from the Cambridge Center for Aging and Neuroscience to investigate the relationship between dynamic metrics of brain networks and cognition using functional magnetic resonance imaging data during movie-watching. We found six reliable co-activation pattern (CAP) states of brain networks grouped into three pairs with opposite activation patterns in three age groups. Compared with young and middle-aged adults, older adults dwelled shorter time in CAP state 4 with deactivated default mode network (DMN) and activated salience, frontoparietal and dorsal-attention networks (DAN), and longer time in state 6 with deactivated DMN and activated DAN and visual network, suggesting altered dynamic interaction between DMN and other brain networks might contribute to cognitive decline in older adults. Meanwhile, older adults showed easier transfer from state 6 to state 3 (activated DMN and deactivated sensorimotor network), suggesting that the fragile antagonism between DMN and other cognitive networks might contribute to cognitive decline in older adults. Our findings provided novel insights into aberrant brain network dynamics associated with cognitive decline.


Subject(s)
Brain , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiology , Cognition/physiology , Brain Mapping , Nerve Net/diagnostic imaging , Nerve Net/physiology
7.
Mol Ther Nucleic Acids ; 34: 102035, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37808924

ABSTRACT

Cas9 protein without sgRNAs can induce genomic damage at the cellular level in vitro. However, whether the detrimental effects occur in embryos after Cas9 treatment remains unknown. Here, using pig embryos as subjects, we observed that Cas9 protein transcribed from injected Cas9 mRNA can persist until at least the blastocyst stage. Cas9 protein alone can induce genome damage in preimplantation embryos, represented by the increased number of phosphorylated histone H2AX foci on the chromatin fiber, which led to apoptosis and decreased cell number of blastocysts. In addition, single-blastocyst RNA sequencing confirmed that Cas9 protein without sgRNAs can cause changes in the blastocyst transcriptome, depressing embryo development signal pathways, such as cell cycle, metabolism, and cellular communication-related signal pathways, while activating apoptosis and necroptosis signal pathways, which together resulted in impaired preimplantation embryonic development. These results indicated that attention should be given to the detrimental effects caused by the Cas9 protein when using CRISPR-Cas9 for germline genome editing, especially for the targeted correction of human pathological mutations using germline gene therapy.

8.
Cell Stem Cell ; 30(9): 1235-1245.e6, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37683604

ABSTRACT

Heterologous organ transplantation is an effective way of replacing organ function but is limited by severe organ shortage. Although generating human organs in other large mammals through embryo complementation would be a groundbreaking solution, it faces many challenges, especially the poor integration of human cells into the recipient tissues. To produce human cells with superior intra-niche competitiveness, we combined optimized pluripotent stem cell culture conditions with the inducible overexpression of two pro-survival genes (MYCN and BCL2). The resulting cells had substantially enhanced viability in the xeno-environment of interspecies chimeric blastocyst and successfully formed organized human-pig chimeric middle-stage kidney (mesonephros) structures up to embryonic day 28 inside nephric-defective pig embryos lacking SIX1 and SALL1. Our findings demonstrate proof of principle of the possibility of generating a humanized primordial organ in organogenesis-disabled pigs, opening an exciting avenue for regenerative medicine and an artificial window for studying human kidney development.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Swine , Animals , Mesonephros , Embryo, Mammalian , Blastocyst , Mammals , Homeodomain Proteins
9.
Acta Pharm Sin B ; 13(9): 3906-3918, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37719371

ABSTRACT

Alcoholic liver disease (ALD) results from continuous and heavy alcohol consumption. The current treatment strategy for ALD is based on alcohol withdrawal coupled with antioxidant drug intervention, which is a long process with poor efficacy and low patient compliance. Alcohol-induced CYP2E1 upregulation has been demonstrated as a key regulator of ALD, but CYP2E1 knockdown in humans was impractical, and pharmacological inhibition of CYP2E1 by a clinically relevant approach for treating ALD was not shown. In this study, we developed a RNAi therapeutics delivered by lipid nanoparticle, and treated mice fed on Lieber-DeCarli ethanol liquid diet weekly for up to 12 weeks. This RNAi-based inhibition of Cyp2e1 expression reduced reactive oxygen species and oxidative stress in mouse livers, and contributed to improved ALD symptoms in mice. The liver fat accumulation, hepatocyte inflammation, and fibrosis were reduced in ALD models. Therefore, this study suggested the feasibility of RNAi targeting to CYP2E1 as a potential therapeutic tool to the development of ALD.

10.
Nucleic Acids Res ; 51(18): 10075-10093, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37650635

ABSTRACT

None of the existing approaches for regulating gene expression can bidirectionally and quantitatively fine-tune gene expression to desired levels. Here, on the basis of precise manipulations of the Kozak sequence, which has a remarkable influence on translation initiation, we proposed and validated a novel strategy to directly modify the upstream nucleotides of the translation initiation codon of a given gene to flexibly alter the gene translation level by using base editors and prime editors. When the three nucleotides upstream of the translation initiation codon (named KZ3, part of the Kozak sequence), which exhibits the most significant base preference of the Kozak sequence, were selected as the editing region to alter the translation levels of proteins, we confirmed that each of the 64 KZ3 variants had a different translation efficiency, but all had similar transcription levels. Using the ranked KZ3 variants with different translation efficiencies as predictors, base editor- and prime editor-mediated mutations of KZ3 in the local genome could bidirectionally and quantitatively fine-tune gene translation to the anticipated levels without affecting transcription in vitro and in vivo. Notably, this strategy can be extended to the whole Kozak sequence and applied to all protein-coding genes in all eukaryotes.


Subject(s)
Gene Editing , Peptide Chain Initiation, Translational , Codon/genetics , Codon, Initiator/genetics , Nucleotides/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Eukaryotic Cells
11.
Yi Chuan ; 45(6): 501-513, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340964

ABSTRACT

With the advancement of plant synthetic biology, plastids have emerged as an optimal platform for the heterologous production of numerous commercially valuable secondary metabolites and therapeutic proteins. In comparison on nuclear genetic engineering, plastid genetic engineering offers unique advantages in terms of efficient expression of foreign genes and biological safety. However, the constitutive expression of foreign genes in the plastid system may impede plant growth. Therefore, it is imperative to further elucidate and design regulatory elements that can achieve precise regulation of foreign genes. In this review, we summarize the progress made in developing regulatory elements for plastid genetic engineering, including operon design and optimization, multi-gene coexpression regulation strategies, and identification of new expression regulatory elements. These findings provide valuable insights for future research.


Subject(s)
Genetic Engineering , Plants , Plants/genetics , Plastids/genetics , Regulatory Sequences, Nucleic Acid , Transformation, Genetic , Plants, Genetically Modified/genetics
12.
J Affect Disord ; 337: 27-36, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37230262

ABSTRACT

BACKGROUND: The causal association between psoriasis and psychiatric disorders remains ambiguous. OBJECTIVES: This study aimed to investigate the causal relationship between psoriasis and common psychiatric disorders using bidirectional Mendelian randomization (MR) analysis. METHODS: Major depressive disorder (MDD) (N = 217,584), bipolar disorder (N = 51,710), schizophrenia (N = 77,096), and anxiety disorder (N = 218,792) were obtained as outcomes, and psoriasis (N = 337,159) were as exposure. Inverse variance weighting (IVW) was used as the main method, with other sensitivity methods as auxiliary methods. Sensitivity analysis and heterogeneity tests were performed to ensure the robustness of the results. We also performed a subgroup analysis of cases with psoriatic arthritis (PsA) (N = 213,879) by using the same testing methods. RESULTS: MR showed that the genetic risk of psoriasis was positively associated with bipolar disorder (odds ratio (OR) = 13.54, 95 % confidence interval (95%CI): 2.43-75.37, P = 0.002) and MDD (OR = 1.08, 95%CI: 1.01-1.15, P = 0.027), which indicated possible causal relationships between psoriasis and these two diseases. Schizophrenia (OR = 3.52, 95%CI: 0.22-55.71, P = 0.372) and anxiety disorders (OR = 0.65, 95%CI: 0.16-2.63, P = 0.546) indicated no significant causal association. No reverse causal effects of psychiatric disorders on psoriasis were found. Subgroup analysis also suggested causal association of PsA with the bipolar affective disorder (OR = 1.05, 95%CI: 1.01-1.08, P = 0.005). LIMITATIONS: Potential pleiotropic effects, restriction to European populations, and differences in diagnostic criteria. CONCLUSIONS: This study has supported the causal association of psoriasis with MDD and bipolar disorder, and the subtype PsA with bipolar disorder, which informed the intervention for mental illnesses in patients with psoriasis.


Subject(s)
Arthritis, Psoriatic , Depressive Disorder, Major , Mental Disorders , Psoriasis , Humans , Mendelian Randomization Analysis , Arthritis, Psoriatic/epidemiology , Arthritis, Psoriatic/genetics , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Mental Disorders/epidemiology , Mental Disorders/genetics , Psoriasis/epidemiology , Psoriasis/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
13.
ACS Omega ; 8(8): 7684-7689, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873021

ABSTRACT

The one-pot nucleophilic ring-opening reaction of oligoethylene glycol macrocyclic sulfates provides an efficient strategy for the monofunctionalization of oligoethylene glycols without protecting or activating group manipulation. In this strategy, the hydrolysis process is generally promoted by sulfuric acid, which is hazardous, difficult to handle, environmentally unfriendly, and unfit for industrial operation. Here, we explored a convenient handling solid acid, Amberlyst-15, as a replacement for sulfuric acid to accomplish the hydrolysis of sulfate salt intermediates. With this method, 18 valuable oligoethylene glycol derivatives were prepared with high efficiency, and gram-scale applicability of this method has been successfully demonstrated to afford a clickable oligoethylene glycol derivative 1b and a valuable building block 1g for F-19 magnetic resonance imaging traceable biomaterial construction.

15.
PeerJ ; 11: e14914, 2023.
Article in English | MEDLINE | ID: mdl-36846454

ABSTRACT

Background: The main active ingredients of Mentha haplocalyx Briq. essential oils are monoterpenes. According to the component of essential oils, M. haplocalyx can be divided into different chemotypes. Chemotype variation is widespread in Mentha plants but its formation mechanism is unclear. Methods: We selected the stable chemotype l-menthol, pulegone, and carvone of M. haplocalyx for transcriptome sequencing. To further investigate the variation of chemotypes, we analyzed the correlation between differential transcription factors (TFs) and key enzymes. Results: Fourteen unigenes related to monoterpenoid biosynthesis were identified, among which (+)-pulegone reductase (PR) and (-)-menthol dehydrogenase (MD) were significantly upregulated in l-menthol chemotype and (-)-limonene 6-hydroxylase was significantly upregulated in carvone chemotype. In addition, 2,599 TFs from 66 families were identified from transcriptome data and the differential TFs included 113 TFs from 34 families. The families of bHLH, bZIP, AP2/ERF, MYB, and WRKY were highly correlated with the key enzymes PR, MD, and (-)-limonene 3-hydroxylase (L3OH) in different M. haplocalyx chemotypes (r > 0.85). The results indicate that these TFs regulate the variation of different chemotypes by regulating the expression patterns of PR, MD, and L3OH. The results of this study provide a basis for revealing the molecular mechanism of the formation of different chemotypes and offer strategies for effective breeding and metabolic engineering of different chemotypes in M. haplocalyx.


Subject(s)
Mentha , Oils, Volatile , Menthol , Limonene , Mentha/genetics , Transcription Factors/genetics , Plant Breeding , Monoterpenes/metabolism , Gene Expression Profiling , Mixed Function Oxygenases
16.
Genome Biol ; 24(1): 8, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650523

ABSTRACT

BACKGROUND: CRISPR-based toolkits have dramatically increased the ease of genome and epigenome editing. SpCas9 is the most widely used nuclease. However, the difficulty of delivering SpCas9 and inability to modulate its expression in vivo hinder its widespread adoption in large animals. RESULTS: Here, to circumvent these obstacles, a doxycycline-inducible SpCas9-expressing (DIC) pig model was generated by precise knock-in of the binary tetracycline-inducible expression elements into the Rosa26 and Hipp11 loci, respectively. With this pig model, in vivo and/or in vitro genome and epigenome editing could be easily realized. On the basis of the DIC system, a convenient Cas9-based conditional knockout strategy was devised through controlling the expression of rtTA component by tissue-specific promoter, which allows the one-step generation of germline-inherited pigs enabling in vivo spatiotemporal control of gene function under simple chemical induction. To validate the feasibility of in vivo gene mutation with DIC pigs, primary and metastatic pancreatic ductal adenocarcinoma was developed by delivering a single AAV6 vector containing TP53-sgRNA, LKB1-sgRNA, and mutant human KRAS gene into the adult pancreases. CONCLUSIONS: Together, these results suggest that DIC pig resources will provide a powerful tool for conditional in vivo genome and epigenome modification for fundamental and applied research.


Subject(s)
CRISPR-Cas Systems , Doxycycline , Animals , Humans , Doxycycline/pharmacology , Gene Editing/methods , Genome , Mutation , Swine , RNA, Guide, CRISPR-Cas Systems/genetics
18.
Protein Expr Purif ; 201: 106166, 2023 01.
Article in English | MEDLINE | ID: mdl-36174814

ABSTRACT

In this study, we investigated a key enzyme encoded by the gene copper amine oxidase (MaCAO), which is involved in the biosynthetic pathway of 1-deoxynojirimycin (DNJ)1, an active ingredient in mulberry leaves. The 1680 bp long MaCAO was successfully cloned (GenBank accession no: MH205733). Subsequently, MaCAO was heterologously expressed using a recombinant plasmid, pET-22b (+)/MaCAO in Escherichia coli BL21 (DE3). A protein with a molecular mass of 62.9 kDa was obtained, whose function was validated through enzymatic reaction. Bioinformatics analysis identified that MaCAO contained the same conserved domain as that of copper amine oxidases ("NYDY"). Furthermore, the tertiary structure of the predicted protein using homology modeling revealed 46% similarity with that of copper amine oxidase (Protein Data Bank ID: 1W2Z). Gas chromatography-mass spectrometry analysis of the enzymatic reaction revealed that MaCAO could catalyze 1,5-pentanediamine to produce 5-aminopentanal. Additionally, levels of mulberry leaf DNJ content were significantly positively correlated with expression levels of MaCAO (P < 0.001). Our results conclude that MaCAO is the key enzyme involved in the biosynthetic pathway of DNJ. The function of MaCAO is validated, providing a foundation for the further analysis of biosynthetic pathways of DNJ in mulberry leaves using tools of synthetic biology.


Subject(s)
Amine Oxidase (Copper-Containing) , Morus , 1-Deoxynojirimycin/metabolism , Amine Oxidase (Copper-Containing)/genetics , Cadaverine/metabolism , Cloning, Molecular , Copper/metabolism , Morus/chemistry , Plant Leaves/metabolism
19.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555572

ABSTRACT

Medicinal plants produce important substrates for their adaptation and defenses against environmental factors and, at the same time, are used for traditional medicine and industrial additives. Plants have relatively little in the way of secondary metabolites via biosynthesis. Recently, the whole-genome sequencing of medicinal plants and the identification of secondary metabolite production were revolutionized by the rapid development and cheap cost of sequencing technology. Advances in functional genomics, such as transcriptomics, proteomics, and metabolomics, pave the way for discoveries in secondary metabolites and related key genes. The multi-omics approaches can offer tremendous insight into the variety, distribution, and development of biosynthetic gene clusters (BGCs). Although many reviews have reported on the plant and medicinal plant genome, chemistry, and pharmacology, there is no review giving a comprehensive report about the medicinal plant genome and multi-omics approaches to study the biosynthesis pathway of secondary metabolites. Here, we introduce the medicinal plant genome and the application of multi-omics tools for identifying genes related to the biosynthesis pathway of secondary metabolites. Moreover, we explore comparative genomics and polyploidy for gene family analysis in medicinal plants. This study promotes medicinal plant genomics, which contributes to the biosynthesis and screening of plant substrates and plant-based drugs and prompts the research efficiency of traditional medicine.


Subject(s)
Plants, Medicinal , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Genomics , Secondary Metabolism/genetics , Proteomics , Genome, Plant
20.
Commun Biol ; 5(1): 1163, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323848

ABSTRACT

Cas12a can process multiple sgRNAs from a single transcript of CRISPR array, conferring advantages in multiplexed base editing when incorporated into base editor systems, which is extremely helpful given that phenotypes commonly involve multiple genes or single-nucleotide variants. However, multiplexed base editing through Cas12a-derived base editors has been barely reported, mainly due to the compromised efficiencies and restricted protospacer-adjacent motif (PAM) of TTTV for wild-type Cas12a. Here, we develop Cas12a-mediated cytosine base editor (CBE) and adenine base editor (ABE) systems with elevated efficiencies and expanded targeting scope, by combining highly active deaminases with Lachnospiraceae bacterium Cas12a (LbCas12a) variants. We confirm that these CBEs and ABEs can perform efficient C-to-T and A-to-G conversions, respectively, on targets with PAMs of NTTN, TYCN, and TRTN. Notably, multiplexed base editing can be conducted using the developed CBEs and ABEs in somatic cells and embryos. These Cas12a variant-mediated base editors will serve as versatile tools for multiplexed point mutation, which is notably important in genetic improvement, disease modeling, and gene therapy.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Cytosine , Adenine , Point Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...