Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 122(7): 1363-73, 2011 May.
Article in English | MEDLINE | ID: mdl-21279625

ABSTRACT

An association panel consisting of 185 accessions representative of the barley germplasm cultivated in the Mediterranean basin was used to localise quantitative trait loci (QTL) controlling grain yield and yield related traits. The germplasm set was genotyped with 1,536 SNP markers and tested for associations with phenotypic data gathered over 2 years for a total of 24 year × location combinations under a broad range of environmental conditions. Analysis of multi-environmental trial (MET) data by fitting a mixed model with kinship estimates detected from two to seven QTL for the major components of yield including 1000 kernel weight, grains per spike and spikes per m(2), as well as heading date, harvest index and plant height. Several of the associations involved SNPs tightly linked to known major genes determining spike morphology in barley (vrs1 and int-c). Similarly, the largest QTL for heading date co-locates with SNPs linked with eam6, a major locus for heading date in barley for autumn sown conditions. Co-localization of several QTL related to yield components traits suggest that major developmental loci may be linked to most of the associations. This study highlights the potential of association genetics to identify genetic variants controlling complex traits.


Subject(s)
Hordeum/growth & development , Hordeum/genetics , Models, Genetic , Phenotype , Quantitative Trait Loci , Chromosome Mapping , Environment , Genetic Markers , Genetic Structures , Genetics, Population , Genotype , Mediterranean Region , Polymorphism, Single Nucleotide
2.
Theor Appl Genet ; 119(1): 175-87, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19415228

ABSTRACT

Population structure and genome-wide linkage disequilibrium (LD) were investigated in 192 Hordeum vulgare accessions providing a comprehensive coverage of past and present barley breeding in the Mediterranean basin, using 50 nuclear microsatellite and 1,130 DArT((R)) markers. Both clustering and principal coordinate analyses clearly sub-divided the sample into five distinct groups centred on key ancestors and regions of origin of the germplasm. For given genetic distances, large variation in LD values was observed, ranging from closely linked markers completely at equilibrium to marker pairs at 50 cM separation still showing significant LD. Mean LD values across the whole population sample decayed below r (2) of 0.15 after 3.2 cM. By assaying 1,130 genome-wide DArT((R)) markers, we demonstrated that, after accounting for population substructure, current genome coverage of 1 marker per 1.5 cM except for chromosome 4H with 1 marker per 3.62 cM is sufficient for whole genome association scans. We show, by identifying associations with powdery mildew that map in genomic regions known to have resistance loci, that associations can be detected in strongly stratified samples provided population structure is effectively controlled in the analysis. The population we describe is, therefore, shown to be a valuable resource, which can be used in basic and applied research in barley.


Subject(s)
Genetic Markers , Genetic Variation , Genetics, Population , Hordeum/genetics , Linkage Disequilibrium , Breeding , Crops, Agricultural/genetics , Expressed Sequence Tags , Genome, Plant , Genotype , Hordeum/classification , Immunity, Innate/genetics , Mediterranean Region , Microsatellite Repeats , Phenotype , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...