Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Springerplus ; 4: 6, 2015.
Article in English | MEDLINE | ID: mdl-25995983

ABSTRACT

Weaver ants (Oecophylla longinoda Latreille) are used commercially to control pest insects and for protein production. In this respect fast colony growth is desirable for managed colonies. Transplantation of non-nestmate pupae to incipient colonies has been shown to boost colony growth. Our objectives were to find the maximum number of pupae a founding queen can handle, and to measure the associated colony growth. Secondly, we tested if transplantation of pupae led to production of larger nanitic workers (defined as unusually small worker ants produced by founding queens in their first batch of offspring). Forty-five fertilized queens were divided into three treatments: 0 (control), 100 or 300 non-nestmate pupae transplanted to each colony. Pupae transplantation resulted in highly increased growth rates, as pupae were readily adopted by the queens and showed high proportions of surviving (mean = 76%). However, survival was significantly higher when 100 pupae were transplanted compared to transplantation of 300 pupae, indicating that queens were unable to handle 300 pupae adequately and that pupae require some amount of nursing. Nevertheless, within the 60-day experiment the transplantation of 300 pupae increased total colony size more than 10-fold whereas 100 pupae increased the size 5.6 fold, compared to control. This increase was due not only to the individuals added in the form of pupae but also to an increased per capita brood production by the resident queen, triggered by the adopted pupae. The size of hatching pupae produced by the resident queen also increased with the number of pupae transplanted, leading to larger nanitic workers in colonies adopting pupae. In conclusion, pupae transplantation may be used to produce larger colonies with larger worker ants and may thus reduce the time to produce weaver ant colonies for commercial purposes. This in turn may facilitate the implementation of the use of weaver ants.

2.
J Econ Entomol ; 102(2): 515-21, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19449630

ABSTRACT

Effectiveness of GF-120 (Dow Chemical) Fruit Fly Bait containing the insecticide spinosad in controlling mango-infesting fruit flies (Diptera: Tephritidae) was assessed by comparing treated orchards with untreated orchards. Twelve mango, Mangifera indica L., plantations located in six villages (two similar orchards per village: one orchard treated and orchard untreated) scattered in the Borgou department (northern Benin) were monitored weekly with fly traps, and the fruit was sampled twice for larval infestation at the beginning and in the middle of May in both 2006 and 2007. The two main mango fruit fly pests are Ceratitis cosyra (Walker) and Bactrocera invadens Drew, Tsuruta & White, an invasive species that recently spread throughout West Africa. In both the 2006 and 2007 seasons, C. cosyra had the earliest peak of abundance, and the difference between treated and untreated orchards, in terms of mean number of flies trapped per week and per trap, was significant only in 2007. B. invadens populations quickly increased with the onset of the rains, from mid-May onward, with no significant difference between treated and untreated orchards. In 2006 and 2007, the larval infestation by B. invadens was significantly lower in plots treated with GF-120 than in untreated control plots. GF-120 provided an 81% reduction in the number of pupae per kilogram of fruit after weekly applications for 7 wk in 2006 and an 89% reduction after 10 wk of weekly applications in 2007. The possibility of integrating GF120 bait sprays in an integrated pest management package is discussed in relation to market requirements.


Subject(s)
Insecticides/pharmacology , Macrolides/pharmacology , Mangifera/parasitology , Tephritidae/drug effects , Animals , Benin , Drug Combinations , Insect Control/methods , Larva/drug effects , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...