Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 174: 105873, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152945

ABSTRACT

Early-life seizures (ELS) are associated with persistent cognitive deficits such as ADHD and memory impairment. These co-morbidities have a dramatic negative impact on the quality of life of patients. Therapies that improve cognitive outcomes have enormous potential to improve patients' quality of life. Our previous work in a rat flurothyl-induction model showed that administration of adrenocorticotropic hormone (ACTH) at time of seizure induction led to improved learning and memory in the animals despite no effect on seizure latency or duration. Administration of dexamethasone (Dex), a corticosteroid, did not have the same positive effect on learning and memory and has even been shown to exacerbate injury in a rat model of temporal lobe epilepsy. We hypothesized that ACTH exerted positive effects on cognitive outcomes through beneficial changes to gene expression and proposed that administration of ACTH at seizure induction would return gene-expression in the brain towards the normal pattern of expression in the Control animals whereas Dex would not. Twenty-six Sprague-Dawley rats were randomized into vehicle- Control, and ACTH-, Dex-, and vehicle- ELS. Rat pups were subjected to 60 flurothyl seizures from P5 to P14. After seizure induction, brains were removed and the hippocampus and PFC were dissected, RNA was extracted and sequenced, and differential expression analysis was performed using generalized estimating equations. Differential expression analysis showed that ACTH pushes gene expression in the brain back to a more normal state of expression through enrichment of pathways involved in supporting homeostatic balance and down-regulating pathways that might contribute to excitotoxic cell-damage post-ELS.


Subject(s)
Adrenocorticotropic Hormone , Flurothyl , Animals , Rats , Dexamethasone/pharmacology , Gene Expression Regulation , Hippocampus , Quality of Life , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/drug therapy
2.
Neurobiol Dis ; 91: 10-20, 2016 07.
Article in English | MEDLINE | ID: mdl-26875662

ABSTRACT

Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations.


Subject(s)
Brain/metabolism , Dendritic Spines/metabolism , Dendritic Spines/pathology , Seizures, Febrile/pathology , Symporters/metabolism , Animals , Animals, Newborn , Brain/growth & development , Disease Susceptibility/metabolism , Epilepsy/physiopathology , Memory Disorders/metabolism , Neurogenesis/physiology , Pyramidal Cells/metabolism , Rats, Sprague-Dawley , Seizures, Febrile/metabolism , Seizures, Febrile/physiopathology , K Cl- Cotransporters
3.
Channels (Austin) ; 6(1): 18-25, 2012.
Article in English | MEDLINE | ID: mdl-22373560

ABSTRACT

The combination of two precipitating factors appears to be more and more recognized in patients with temporal lobe epilepsy. Using a two-hit rat model, with a neonatal freeze lesion mimicking a focal cortical malformation combined with hyperthermia-induced seizures mimicking febrile seizures, we have previously reported an increase of inhibition in CA1 pyramidal cells at P20. Here, we investigated the changes affecting excitatory and inhibitory drive onto CA1 interneurons to better define the changes in CA1 inhibitory networks and their paradoxical role in epileptogenesis, using electrophysiological recordings in CA1 hippocampus from rat pups (16-20 d old). We investigated interneurons in CA1 hippocampal area located in stratum oriens (Or) and at the border of strata lacunosum and moleculare (L-M). Our results revealed an increase of the excitatory drive to both types of interneurons with no change in the inhibitory drive. The mechanisms underlying the increase of excitatory synaptic currents (EPSCs) in both types of interneurons are different. In Or interneurons, the amplitude of spontaneous and miniature EPSCs increased, while their frequency was not affected suggesting changes at the post-synaptic level. In L-M interneurons, the frequency of spontaneous EPSCs increases, but the amplitude is not affected. Analyses of miniature EPSCs showed no changes in both their frequency and amplitude. We concluded that L-M interneurons increase in excitatory drive is due to a change in Shaffer collateral axon excitability. The changes described here in CA1 inhibitory network may actually contribute to the epileptogenicity observed in this dual pathology model by increasing pyramidal cell synchronization.


Subject(s)
CA1 Region, Hippocampal/physiopathology , Epilepsy/physiopathology , Interneurons/physiology , Animals , Disease Models, Animal , Excitatory Postsynaptic Potentials , Inhibitory Postsynaptic Potentials , Rats , Rats, Sprague-Dawley
4.
Eur J Neurosci ; 31(7): 1252-60, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20345922

ABSTRACT

Febrile seizures are the most common types of seizure in children, and are generally considered to be benign. However, febrile seizures in children with dysgenesis have been associated with the development of temporal lobe epilepsy. We have previously shown in a rat model of dysgenesis (cortical freeze lesion) and hyperthermia-induced seizures that 86% of these animals developed recurrent seizures in adulthood. The cellular changes underlying the increased risk of epileptogenesis in this model are not known. Using whole cell patch-clamp recordings from CA1 hippocampal pyramidal cells, we found a more pronounced increase in excitability in rats with both hyperthermic seizures and dysgenesis than in rats with hyperthermic seizures alone or dysgenesis alone. The change was found to be secondary to an increase in N-methyl-D-aspartate (NMDA) receptor-mediated excitatory postsynaptic currents (EPSCs). Inversely, hyperpolarization-activated cation current was more pronounced in naïve rats with hyperthermic seizures than in rats with dysgenesis and hyperthermic seizures or with dysgenesis alone. The increase in GABAA-mediated inhibition observed was comparable in rats with or without dysgenesis after hyperthermic seizures, whereas no changes were observed in rats with dysgenesis alone. Our work indicates that in this two-hit model, changes in NMDA receptor-mediated EPSCs may facilitate epileptogenesis following febrile seizures. Changes in the hyperpolarization-activated cation currents may represent a protective reaction and act by damping the NMDA receptor-mediated hyperexcitability, rather than converting inhibition into excitation. These findings provide a new hypothesis of cellular changes following hyperthermic seizures in predisposed individuals, and may help in the design of therapeutic strategies to prevent epileptogenesis following prolonged febrile seizures.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/metabolism , Excitatory Amino Acid Agonists/pharmacology , Hippocampus/physiopathology , N-Methylaspartate/pharmacology , Potassium Channels/metabolism , Seizures, Febrile , gamma-Aminobutyric Acid/pharmacology , Animals , Animals, Newborn , Bicuculline/pharmacology , Biophysics/methods , Disease Models, Animal , Electric Stimulation/methods , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , GABA Antagonists/pharmacology , Hippocampus/pathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Hyperthermia, Induced/methods , In Vitro Techniques , Male , Patch-Clamp Techniques/methods , Pyramidal Cells/physiopathology , Rats , Rats, Sprague-Dawley , Seizures, Febrile/etiology , Seizures, Febrile/pathology , Seizures, Febrile/physiopathology , Statistics, Nonparametric , Synapses/drug effects , Synapses/physiology
5.
Ann Neurol ; 65(2): 160-6, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19224531

ABSTRACT

OBJECTIVE: Glutamate receptors, which play a major role in the physiology and pathology of central nervous system gray matter, are also involved in the pathophysiology of white matter. However, the cellular and molecular mechanisms responsible for excitotoxic damage to white matter elements are not fully understood. We explored the roles of AMPA and GluR5 kainate receptors in axonal Ca(2+) deregulation. METHODS: Dorsal column axons were loaded with a Ca(2+) indicator and imaged in vitro using confocal microscopy. RESULTS: Both AMPA and a GluR5 kainate receptor agonist increased intraaxonal Ca(2+) in myelinated rat dorsal column fibers. These responses were inhibited by selective antagonists of these receptors. The GluR5-mediated Ca(2+) increase was mediated by both canonical (ie, ionotropic) and noncanonical (metabotropic) signaling, dependent on a pertussis toxin-sensitive G protein/phospholipase C-dependent pathway, promoting Ca(2+) release from inositol triphosphate-dependent stores. In addition, the GluR5 response was reduced by intraaxonal NO scavengers. In contrast, GluR4 AMPA receptors operated via Ca(2+)-induced Ca(2+) release, dependent on ryanodine receptors, and unaffected by NO scavengers. Neither pathway depended on L-type Ca(2+) channels, in contrast with GluR6 kainate receptor action.1 Immunohistochemistry confirmed the presence of GluR4 and GluR5 clustered at the surface of myelinated axons; GluR5 coimmunoprecipitated with nNOS and often colocalized with neuronal nitric oxide synthase clusters on the internodal axon. INTERPRETATION: Central myelinated axons express functional AMPA and GluR5 kainate receptors, and can directly respond to glutamate receptor agonists. These glutamate receptor-dependent signaling pathways promote an increase in intraaxonal Ca(2+) levels potentially contributing to axonal degeneration.


Subject(s)
Axons/metabolism , Nerve Fibers, Myelinated/metabolism , Receptors, AMPA/metabolism , Receptors, Kainic Acid/metabolism , Spinal Cord/cytology , Animals , Axons/drug effects , Axons/ultrastructure , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Egtazic Acid/analogs & derivatives , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Agonists/metabolism , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Male , Microscopy, Immunoelectron/methods , Nerve Fibers, Myelinated/ultrastructure , Nitric Oxide Synthase Type I/metabolism , Pertussis Toxin/pharmacology , Rats , Rats, Long-Evans , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
6.
Ann Neurol ; 65(2): 151-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19224535

ABSTRACT

OBJECTIVE: The deleterious effects of glutamate excitotoxicity are well described for central nervous system gray matter. Although overactivation of glutamate receptors also contributes to axonal injury, the mechanisms are poorly understood. Our goal was to elucidate the mechanisms of kainate receptor-dependent axonal Ca(2+) deregulation. METHODS: Dorsal column axons were loaded with a Ca(2+) indicator and imaged in vitro using confocal laser-scanning microscopy. RESULTS: Activation of glutamate receptor 6 (GluR6) kainate receptors promoted a substantial increase in axonal [Ca(2+)]. This Ca(2+) accumulation was due not only to influx from the extracellular space, but a significant component originated from ryanodine-dependent intracellular stores, which, in turn, depended on activation of L-type Ca(2+) channels: ryanodine, nimodipine, or nifedipine blocked the agonist-induced Ca(2+) increase. Also, GluR6 stimulation induced intraaxonal production of nitric oxide (NO), which greatly enhanced the Ca(2+) response: quenching of NO with intraaxonal (but not extracellular) scavengers, or inhibition of neuronal NO synthase with intraaxonal Nomega-nitro-L-arginine methyl ester, blocked the Ca(2+) increase. Loading axons with a peptide that mimics the C-terminal PDZ binding sequence of GluR6, thus interfering with the coupling of GluR6 to downstream effectors, greatly reduced the agonist-induced axonal Ca(2+) increase. Immunohistochemistry showed GluR6/7 clusters on the axolemma colocalized with neuronal NO synthase and Ca(v)1.2. INTERPRETATION: Myelinated spinal axons express functional GluR6-containing kainate receptors, forming part of novel signaling complexes reminiscent of postsynaptic membranes of glutamatergic synapses. The ability of such axonal "nanocomplexes" to release toxic amounts of Ca(2+) may represent a key mechanism of axonal degeneration in disorders such as multiple sclerosis where abnormal accumulation of glutamate and NO are known to occur.


Subject(s)
Axons/metabolism , Nerve Fibers, Myelinated/metabolism , Receptors, Kainic Acid/physiology , Spinal Nerve Roots/cytology , Animals , Axons/drug effects , Calcium/metabolism , Calcium Channels, L-Type/physiology , Cysteine/metabolism , Egtazic Acid/analogs & derivatives , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/pharmacology , Hydroxocobalamin/pharmacology , Male , Microscopy, Confocal/methods , Myoglobin/pharmacology , Nerve Fibers, Myelinated/drug effects , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , PDZ Domains/physiology , Peptides/metabolism , Protein Multimerization/physiology , Rats , Rats, Long-Evans , Receptors, Kainic Acid/chemistry , Ryanodine/pharmacology , Spinal Cord Injuries/metabolism , GluK2 Kainate Receptor
7.
Muscle Nerve ; 35(4): 451-7, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17206661

ABSTRACT

A detailed understanding of injury mechanisms in peripheral nerve fibers will help guide successful design of therapies for peripheral neuropathies. This study was therefore undertaken to examine the ionic mechanisms of Ca2+ overload in peripheral myelinated fibers subjected to chemical inhibition of energy metabolism. Myelinated axons from rat dorsal roots were co-loaded with Ca2+-sensitive (Oregon Green BAPTA-1) and Ca2+-insensitive (Alexa Fluor 594) dextran-conjugated fluorophores and imaged using confocal laser scanning microscopy. Axoplasmic regions were clearly outlined by the Ca2+-insensitive dye, from which axonal Ca2+-dependent fluorescence changes (FCa.ax) were measured. Block of Na+-K+ ATPase (ouabain), opening of Na+ channels (veratridine), and inhibiting energy metabolism (iodoacetate + NaN3) caused a rapid rise in FCa.ax to 96% above control after 30 min. Chemical ischemia (iodoacetate + NaN3) caused a more gradual increase in FCa.ax (54%), which was almost completely dependent on bath Ca2+, indicating that most of the Ca2+ accumulation occurred via influx across the axolemma. Na+ channel block (tetrodotoxin) reduced ischemic FCa.ax rise (14%); however, inhibition of L-type Ca2+ channels (nimodipine) had no effect (60%). In contrast, Na+-Ca2+ exchange inhibition (KB-R7943) significantly reduced ischemic FCa.ax rise (18%). Together our results indicate that the bulk of Ca2+ overload in injured peripheral myelinated axons occurs via reverse Na+-Ca2+ exchange, driven by axonal Na+ accumulation through voltage-gated tetrodotoxin-sensitive Na+ channels. This mechanism may represent a viable therapeutic target for peripheral neuropathies.


Subject(s)
Axons/metabolism , Calcium/metabolism , Ischemia/metabolism , Peripheral Nervous System Diseases/metabolism , Spinal Nerve Roots/metabolism , Wallerian Degeneration/metabolism , Animals , Axons/drug effects , Calcium Channel Blockers/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Energy Metabolism/drug effects , Energy Metabolism/physiology , Fluorescent Dyes , Ischemia/chemically induced , Ischemia/physiopathology , Male , Organ Culture Techniques , Peripheral Nervous System Diseases/physiopathology , Rats , Rats, Long-Evans , Sodium/metabolism , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Sodium-Calcium Exchanger/antagonists & inhibitors , Sodium-Calcium Exchanger/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Spinal Nerve Roots/blood supply , Spinal Nerve Roots/physiopathology , Wallerian Degeneration/physiopathology
8.
J Physiol ; 577(Pt 1): 191-204, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-16945971

ABSTRACT

Electrophysiological recordings of propagated compound action potentials (CAPs) and axonal Ca(2+) measurements using confocal microscopy were used to study the interplay between AMPA receptors and intracellullar Ca(2+) stores in rat spinal dorsal columns subjected to in vitro combined oxygen and glucose deprivation (OGD). Removal of Ca(2+) or Na(+) from the perfusate was protective after 30 but not 60 min of OGD. TTX was ineffective with either exposure, consistent with its modest effect on ischaemic depolarization. In contrast, AMPA antagonists were very protective, even after 60 min of OGD where 0Ca(2+) + EGTA perfusate was ineffective. Similarly, blocking ryanodine receptor-mediated Ca(2+) mobilization from internal stores (0Ca(2+) + nimodipine or 0Ca(2+) + ryanodine), or inositol 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release (block of group 1 metabotropic glutamate receptors with 1-aminoindan-1,5-dicarboxylic acid, inhibition of phospholipase C with U73122 or IP(3) receptor block with 2APB; each in 0Ca(2+)) were each very protective, with the combination resulting in virtually complete functional recovery after 1 h OGD (97 +/- 32% CAP recovery versus 4 +/- 6% in artificial cerebrospinal fluid). AMPA induced a rise in Ca(2+) concentration in normoxic axons, which was greatly reduced by blocking ryanodine receptors. Our data therefore suggest a novel and surprisingly complex interplay between AMPA receptors and Ca(2+) mobilization from intracellular Ca(2+) stores. We propose that AMPA receptors may not only allow Ca(2+) influx from the extracellular space, but may also significantly influence Ca(2+) release from intra-axonal Ca(2+) stores. In dorsal column axons, AMPA receptor-dependent mechanisms appear to exert a greater influence than voltage-gated Na(+) channels on functional outcome following OGD.


Subject(s)
Axons/metabolism , Calcium/metabolism , Receptors, AMPA/metabolism , Spinal Cord Ischemia/metabolism , Spinal Cord/blood supply , Spinal Cord/metabolism , Animals , In Vitro Techniques , Male , Rats , Rats, Long-Evans
9.
Neuron ; 40(1): 53-63, 2003 Sep 25.
Article in English | MEDLINE | ID: mdl-14527433

ABSTRACT

The mechanisms of Ca(2+) release from intracellular stores in CNS white matter remain undefined. In rat dorsal columns, electrophysiological recordings showed that in vitro ischemia caused severe injury, which persisted after removal of extracellular Ca(2+); Ca(2+) imaging confirmed that an axoplasmic Ca(2+) rise persisted in Ca(2+)-free perfusate. However, depletion of Ca(2+) stores or reduction of ischemic depolarization (low Na(+), TTX) were protective, but only in Ca(2+)-free bath. Ryanodine or blockers of L-type Ca(2+) channel voltage sensors (nimodipine, diltiazem, but not Cd(2+)) were also protective in zero Ca(2+), but their effects were not additive with ryanodine. Immunoprecipitation revealed an association between L-type Ca(2+) channels and RyRs, and immunohistochemistry confirmed colocalization of Ca(2+) channels and RyR clusters on axons. Similar to "excitation-contraction coupling" in skeletal muscle, these results indicate a functional coupling whereby depolarization sensed by L-type Ca(2+) channels activates RyRs, thus releasing damaging amounts of Ca(2+) under pathological conditions in white matter.


Subject(s)
Action Potentials/physiology , Calcium Channels, L-Type/metabolism , Calcium/metabolism , Posterior Horn Cells/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Channel Blockers/pharmacology , Cell Hypoxia/physiology , In Vitro Techniques , Male , Posterior Horn Cells/drug effects , Posterior Horn Cells/ultrastructure , Rats , Rats, Long-Evans , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...