Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 683, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796585

ABSTRACT

BACKGROUND: Usher syndrome 1 (USH1) is the most severe subtype of Usher syndrome characterized by severe sensorineural hearing impairment, retinitis pigmentosa, and vestibular areflexia. USH1 is usually induced by variants in MYO7A, a gene that encodes the myosin-VIIa protein. Myosin-VIIA is effectively involved in intracellular molecular traffic essential for the proper function of the cochlea, the retinal photoreceptors, and the retinal pigmented epithelial cells. METHODS AND RESULTS: In this study, we report a new homozygous missense variant (NM_000260.4: c.1657 C > T p.(His553Tyr)) in MYO7A of a 28-year-old female with symptoms consistent with USH1. This variant, c.1657 C > T p.(His553Tyr) is positioned in the highly conserved myosin-VIIA motor domain. Previous studies showed that variants in this domain might disrupt the ability of the protein to bind to actin and thus cause the disorder. CONCLUSIONS: Our findings contribute to our understanding of the phenotypic and mutational spectrum of USH1 associated with autosomal recessive MYO7A variants and emphasize the important role of molecular testing in accurately diagnosing this syndrome. More advanced research is required to understand the functional effect of the identified variant and the genotype-phonotype correlations of MYO7A-related Usher syndrome 1.


Subject(s)
Homozygote , Mutation, Missense , Myosin VIIa , Usher Syndromes , Usher Syndromes/genetics , Myosin VIIa/metabolism , Myosin VIIa/genetics , Humans , Female , Mutation, Missense/genetics , Adult , Myosins/genetics , Pedigree
2.
J Clin Immunol ; 41(5): 1048-1063, 2021 07.
Article in English | MEDLINE | ID: mdl-33660144

ABSTRACT

Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-γ and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy. METHODS: We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY. RESULTS: We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related - most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-γ on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (ΔψM), indicating mitochondrial dysfunction. CONCLUSION: Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-γ-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies.


Subject(s)
Chagas Cardiomyopathy/genetics , Inflammation/genetics , Mitochondria/genetics , Adult , Aged , Aged, 80 and over , Female , Genetic Predisposition to Disease , Genetic Variation , Humans , Male , Middle Aged , Exome Sequencing
3.
Genome Announc ; 5(28)2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28705976

ABSTRACT

Faustoviruses are amoeba-infecting giant viruses closely related to the Asfarviridae family. Here, we report the isolation, genome sequencing, and annotation of ST1 and LC9, two new strains belonging to lineages L and E9 of faustoviruses, currently represented by only one representative each.

SELECTION OF CITATIONS
SEARCH DETAIL
...