Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1412923, 2024.
Article in English | MEDLINE | ID: mdl-38993497

ABSTRACT

Introduction: The oropharyngeal microbiome plays an important role in protection against infectious agents when in balance. Despite use of vaccines and antibiotic therapy to prevent respiratory tract infections, they remain one of the major causes of mortality and morbidity in Low- and middle-income countries. Hence the need to explore other approaches to prevention by identifying microbial biomarkers that could be leveraged to modify the microbiota in order to enhance protection against pathogenic bacteria. The aim of this study was to analyze the oropharyngeal microbiome (OPM) of schoolchildren in Côte d'Ivoire presenting symptoms of upper respiratory tract infections (URTI) for better prevention strategy. Methods: Primary schools' children in Korhogo (n = 37) and Abidjan (n = 39) were followed for six months with monthly oropharyngeal sampling. Clinical diagnostic of URT infection was performed and nucleic acid extracted from oropharyngeal swabs were used for 16S rRNA metagenomic analysis and RT-PCR. Results: The clinical examination of children's throat in Abidjan and Korhogo identified respectively 17 (43.59%) and 15 (40.54%) participants with visible symptoms of URTIs, with 26 episodes of infection in Abidjan and 24 in Korhogo. Carriage of Haemophilus influenzae (12%), Streptococcus pneumoniae (6%) and SARS-CoV-2 (6%) was confirmed by PCR. A significant difference in alpha diversity was found between children colonized by S. pneumoniae and those that were not (p = 0.022). There was also a significant difference in alpha diversity between children colonised with H. influenzae and those who were not (p = 0.017). No significant difference was found for SARS-CoV-2. Sphingomonas, Ralstonia and Rothia were significantly enriched in non-carriers of S. pneumoniae; Actinobacillus was significantly enriched in non-carriers of H. influenzae; Actinobacillus and Porphyromonas were significantly enriched in non-carriers of SARS-CoV-2 (p < 0.001). Discussion: Nearly 40% of children showed clinical symptoms of infection not related to geographical location. The OPM showed an imbalance during H. influenzae and S. pneumoniae carriage. This study provides a baseline understanding of microbiome markers in URTIs in children for future research, to develop targeted interventions aimed at restoring the microbial balance and reducing the symptoms associated with RTIs.

2.
Malar J ; 22(1): 14, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36635720

ABSTRACT

BACKGROUND: Entomological surveillance provides critical information on vectors for appropriate malaria vector control and strategic decision-making. The widely documented insecticide resistance of malaria vectors in Côte d'Ivoire requires that any vector control intervention deployment be driven by entomological data to optimize its effectiveness and appropriate resource allocations. To achieve this goal, this study documents the results of monthly vector surveillance and insecticide susceptibility tests conducted in 2019 and a review of all previous entomological monitoring data used to guide vector control decision making. Furthermore, susceptibility to pirimiphos-methyl and clothianidin was assessed in addition to chlorfenapyr and pyrethroids (intensity and piperonyl butoxide (PBO) synergism) tests previously reported. Vector bionomic data were conducted monthly in four sites (Sakassou, Béoumi, Dabakala and Nassian) that were selected based on their reported high malaria incidence. Adult mosquitoes were collected using human landing catches (HLCs), pyrethrum spray catches (PSCs), and human-baited CDC light traps to assess vector density, behaviour, species composition and sporozoite infectivity. RESULTS: Pirimiphos-methyl and clothianidin susceptibility was observed in 8 and 10 sites, respectively, while previous data reported chlorfenapyr (200 µg/bottle) susceptibility in 13 of the sites, high pyrethroid resistance intensity and increased mortality with PBO pre-exposure at all 17 tested sites. Anopheles gambiae sensu lato was the predominant malaria vector collected in all four bionomic sites. Vector density was relatively higher in Sakassou throughout the year with mean biting rates of 278.2 bites per person per night (b/p/n) compared to Béoumi, Dabakala and Nassian (mean of 48.5, 81.4 and 26.6 b/p/n, respectively). The mean entomological inoculation rate (EIR) was 4.44 infective bites per person per night (ib/p/n) in Sakassou, 0.34 ib/p/n in Beoumi, 1.17 ib/p/n in Dabakala and 1.02 ib/p/n in Nassian. The highest EIRs were recorded in October in Béoumi (1.71 ib/p/n) and Nassian (3.22 ib/p/n), in July in Dabakala (4.46 ib/p/n) and in May in Sakassou (15.6 ib/p/n). CONCLUSION: Based on all results and data review, the National Malaria Control Programme developed and implemented a stratified insecticide-treated net (ITN) mass distribution in 2021 considering new generation ITNs. These results also supported the selection of clothianidin-based products and an optimal spraying time for the first indoor residual spraying (IRS) campaign in Sakassou and Nassian in 2020.


Subject(s)
Anopheles , Insecticides , Malaria , Humans , Animals , Insecticides/pharmacology , Malaria/epidemiology , Mosquito Control/methods , Cote d'Ivoire/epidemiology , Mosquito Vectors , Insecticide Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...