Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36500816

ABSTRACT

This work outlines, for the first time, the fabrication of a whole hybrid sol-gel optofluidic platform by integrating a microfluidic biosensor platform with optical waveguides employing a standard photolithography process. To demonstrate the suitability of this new hybrid sol-gel optofluidic platform, optical and bio-sensing proof-of-concepts are proposed. A photoreactive hybrid sol-gel material composed of a photopolymerisable organically modified silicon alkoxide and a transition metal complex was prepared and used as the fabrication material for the entire optofluidic platform, including the optical waveguides, the sensing areas, and the microfluidic device. The most suitable sol-gel materials chosen for the fabrication of the cladding and core of the waveguides showed a RIC of 3.5 × 10-3 and gave thicknesses between 5.5 and 7 µm. The material was optimised to simultaneously meet the photoreactive properties required for the photolithography fabrication process and the optical properties needed for the effective optical operability of the microstructured waveguides at 532 and 633 nm with an integrated microfluidic device. The optical proof-of-concept was performed using a fluorescent dye (Atto 633) and recording its optical responses while irradiated with a suitable optical excitation. The biosensing capability of the platform was assessed using a polyclonal primary IgG mouse antibody and a fluorescent labelled secondary IgG anti-mouse antibody. A limit of detection (LOD) of 50 ug/mL was achieved. A correlation between the concentration of the dye and the emission fluorescence was evidenced, thus clearly demonstrating the feasibility of the proposed hybrid sol-gel optofluidic platform concept. The successful integration and operability of optical and microfluidic components in the same optofluidic platform is a novel concept, particularly where the sol-gel fabrication material is concerned.

2.
Sensors (Basel) ; 21(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209618

ABSTRACT

The following presents a comparison of an extrinsic Fabry-Perot interferometer (EFPI)-based temperature sensor, constructed using a novel diaphragm manufacturing technique, with a reference all-glass EFPI temperature sensor. The novel diaphragm was manufactured using polyvinyl alcohol (PVA). The novel sensor fabrication involved fusing a single-mode fibre (SMF) to a length of fused quartz capillary, which has an inner diameter of 132 µm and a 220 µm outer diameter. The capillary was subsequently polished until the distal face of the capillary extended approximately 60 µm beyond that of the single mode fibre. Upon completion of polishing, the assembly is immersed in a solution of PVA. Controlled extraction resulted in creation of a thin diaphragm while simultaneously applying a protective coating to the fusion point of the SMF and capillary. The EFPI sensor is subsequently sealed in a second fluid-filled capillary, thereby creating a novel temperature sensor structure. Both temperature sensors were placed in a thermogravimetric analyser and heated from an indicated 30 °C to 100 °C to qualitatively compare sensitivities. Initial results indicated that the novel manufacturing technique both expedited production and produces a more sensitive sensor when compared to an all-glass construction.


Subject(s)
Fiber Optic Technology , Optical Fibers , Hot Temperature , Interferometry , Temperature
3.
ACS Nano ; 2(11): 2257-62, 2008 Nov 25.
Article in English | MEDLINE | ID: mdl-19206391

ABSTRACT

Investigations into the structuring by two-photon polymerization of a nonshrinking, photosensitive, zirconium sol-gel material are presented. This hybrid material can be photostructured even when it contains up to 30 mol % of zirconium propoxide (ZPO); by varying the material's inorganic content, it is possible to modify and tune its refractive index. The introduction of ZPO significantly increases the photosensitivity of the resulting photopolymer. The fabricated three-dimensional photonic crystal structures demonstrate high resolution and a clear band-stop in the near-IR region. In contrast to common practice, no additional effort is required to precompensate for shrinkage or to improve the structural stability of the fabricated photonic crystals; this, combined with the possibility of tuning this material's optical, mechanical, and chemical properties, makes it suitable for a variety of applications by two-photon polymerization manufacturing.


Subject(s)
Oxides/chemistry , Photochemistry/methods , Zirconium/chemistry , Chemistry, Inorganic/methods , Crystallization , Equipment Design , Infrared Rays , Materials Testing , Models, Chemical , Molecular Conformation , Phase Transition , Photons , Refractometry , Spectroscopy, Fourier Transform Infrared , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...