Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Microbiol Biotechnol ; 3(1): 135-42, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11200226

ABSTRACT

K88 fimbriae are ordered polymeric protein structures at the surface of enterotoxigenic Escherichia coli cells. Their production and assembly requires a molecular chaperone located in the periplasm (FaeE) and a molecular usher located in the outer membrane (FaeD). FaeC is the tip component of the K88 fimbriae. We studied the expression of the subcloned faeC gene, the subcellular localization of FaeC and its interaction with the chaperone and the outer membrane usher. In the absence of the chaperone or the usher, FaeC could not be detected in E. coli cells harbouring the faeC gene and its ribosome binding site under contol of the IPTG inducible lpp/lac promoter/operator. The expression of FaeC was detectable in the presence of chaperone FaeE, but a direct interaction between the chaperone and FaeC was not found. The expression of FaeC was also detectable in cells co-expressing the outer membrane usher FaeD. Overexpression of FaeC after changing the faeC ribosome binding site appeared to induce lethality. Expression of subcloned FaeC in the absence of FaeE or FaeD could be detected when faeC was cloned under the tight control of the ara promoter/operator and when lethality induction was avoided. The direct interaction of FaeC with outer membranes containing the usher FaeD was studied by cell fractionation, isopycnic sucrose density gradient centrifugation, SDS-PAGE and immunoblotting. FaeC was found to bind to outer membranes containing FaeD or a FaeD-PhoA hybrid construct containing 215 amino-terminal residues of FaeD. This binding was not observed when control outer membranes without FaeD were used. No other K88 specific proteins were required for this interaction. The direct interaction between FaeC and FaeD in the outer membranes was shown by affinity blotting experiments. FaeE was not required for this interaction. Together these data indicate that the minor fimbrial subunit FaeC, unlike FaeG, H and F, does not have a strong interaction with the chaperone FaeE in the E. coli periplasm, but directly binds to the outer membrane molecular usher FaeD.


Subject(s)
Antigens, Bacterial , Antigens, Surface/biosynthesis , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Escherichia coli Proteins , Fimbriae Proteins , Molecular Chaperones/metabolism , Amino Acid Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Molecular Sequence Data , Periplasm
2.
Microb Pathog ; 18(2): 115-28, 1995 Feb.
Article in English | MEDLINE | ID: mdl-7643741

ABSTRACT

K88ab fimbriae are long polymeric protein structures mainly composed of FaeG proteins. The Escherichia coli K88 periplasmic chaperone FaeE is a homodimer and forms a heterotrimeric complex with the K88 major fimbrial component FaeG in the periplasm. In this study the direct interaction of FaeE and the minor K88 fimbrial subunits FaeH and FaeI were investigated. The faeH gene and the faeI gene were subcloned in a pINIIIA1-derivative vector containing the faeE gene. SDS-PAGE using normal and gradient gels and immunoblotting revealed that the subcloned genes were expressed in the periplasm. Analyses of periplasmic fractions by native gel electrophoresis and isoelectric focusing (IEF) showed that FaeE and FaeH, as well as FaeE and FaeI formed protein complexes. These complexes were isolated and purified by FPLC or IEF and native gel electrophoresis. The stoichiometry of the proteins in these complexes was studied by automated Edman degradation and gel image analysis. The results showed that FaeE and FaeH, and FaeE and FaeI formed heterotrimeric E2H and E2I complexes, respectively. In addition to the E2H complex, cells expressing FaeE and FaeH accumulated unbound FaeH in their periplasm. In contrast to the E2G complex, the purified E2H complex was not stable and was partly dissociated in the experimental conditions used, suggesting that the interaction between FaeE and FaeH is not as strong as the interaction of FaeE and FaeG.


Subject(s)
Antigens, Surface/biosynthesis , Bacterial Proteins/metabolism , Escherichia coli Proteins , Escherichia coli/metabolism , Fimbriae Proteins , Amino Acid Sequence , Antigens, Bacterial/biosynthesis , Antigens, Surface/genetics , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Blotting, Western , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Escherichia coli/genetics , Isoelectric Focusing , Molecular Chaperones/metabolism , Molecular Sequence Data , Multigene Family , Protein Conformation , Restriction Mapping , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...