Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Horiz ; 9(2): 317-323, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38196394

ABSTRACT

Modifying the environment around particles (e.g., introducing a secondary phase or external field) can affect the way they interact and assemble, thereby giving control over the physical properties of a dynamic system. Here, graphene oxide (GO) photonic liquids that respond to a magnetic field are demonstrated for the first time. Magnetic nanoparticles are used to provide a continuous magnetizable liquid environment around the GO liquid crystalline domains. In response to a magnetic field, the alignment of magnetic nanoparticles, coupled with the diamagnetic property of GO nanosheets, drives the reorientation and alignment of the nanosheets, enabling switchable photonic properties using a permanent magnet. This phenomenon is anticipated to be extendable to other relevant photonic systems of shape-anisotropic nanoparticles and may open up opportunities for developing GO-based optical materials and devices.

2.
J Am Chem Soc ; 145(11): 5991-6006, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36881986

ABSTRACT

The field of high entropy oxides (HEOs) flips traditional materials science paradigms on their head by seeking to understand what properties arise in the presence of profound configurational disorder. This disorder, which originates from multiple elements sharing a single lattice site, can take on a kaleidoscopic character due to the vast numbers of possible elemental combinations. High configurational disorder appears to imbue some HEOs with functional properties that far surpass their nondisordered analogs. While experimental discoveries abound, efforts to characterize the true magnitude of the configurational entropy and understand its role in stabilizing new phases and generating superior functional properties have lagged behind. Understanding the role of configurational disorder in existing HEOs is the crucial link to unlocking the rational design of new HEOs with targeted properties. In this Perspective, we attempt to establish a framework for articulating and beginning to address these questions in pursuit of a deeper understanding of the true role of entropy in HEOs.

3.
J Am Chem Soc ; 144(45): 20590-20600, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36321637

ABSTRACT

Spinel oxides are an ideal setting to explore the interplay between configurational entropy, site selectivity, and magnetism in high-entropy oxides (HEOs). In this work, we characterize the magnetic properties of the spinel (Cr, Mn, Fe, Co, Ni)3O4 and study the evolution of its magnetism as a function of nonmagnetic gallium substitution. Across the range of compositions studied here, from 0 to 40% Ga, magnetic susceptibility and powder neutron diffraction measurements show that ferrimagnetic order is robust in the spinel HEO. However, we also find that the ferrimagnetic order is highly tunable, with the ordering temperature, saturated and sublattice moments, and magnetic hardness all varying significantly as a function of Ga concentration. Through X-ray absorption and magnetic circular dichroism, we are able to correlate this magnetic tunability with strong site selectivity between the various cations and the tetrahedral and octahedral sites in the spinel structure. In particular, we find that while Ni and Cr are largely unaffected by the substitution with Ga, the occupancies of Mn, Co, and Fe are each significantly redistributed. Ga substitution also requires an overall reduction in the transition metal valence, and this is entirely accommodated by Mn. Finally, we show that while site selectivity has an overall suppressing effect on the configurational entropy, over a certain range of compositions, Ga substitution yields a striking increase in the configurational entropy and may confer additional stabilization. Spinel oxides can be tuned seamlessly from the low-entropy to the high-entropy regime, making this an ideal platform for entropy engineering.

4.
Nat Mater ; 21(6): 627-633, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35228661

ABSTRACT

(Ba,K)BiO3 constitute an interesting class of superconductors, where the remarkably high superconducting transition temperature Tc of 30 K arises in proximity to charge density wave order. However, the precise mechanism behind these phases remains unclear. Here, enabled by high-pressure synthesis, we report superconductivity in (Ba,K)SbO3 with a positive oxygen-metal charge transfer energy in contrast to (Ba,K)BiO3. The parent compound BaSbO3-δ shows a larger charge density wave gap compared to BaBiO3. As the charge density wave order is suppressed via potassium substitution up to 65%, superconductivity emerges, rising up to Tc = 15 K. This value is lower than the maximum Tc of (Ba,K)BiO3, but higher by more than a factor of two at comparable potassium concentrations. The discovery of an enhanced charge density wave gap and superconductivity in (Ba,K)SbO3 indicates that strong oxygen-metal covalency may be more essential than the sign of the charge transfer energy in the main-group perovskite superconductors.

5.
J Phys Chem Lett ; 11(15): 6105-6111, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32657592

ABSTRACT

The ultrafast optical response of nodal-line semimetals ZrSiS and ZrSiSe was studied in the near-infrared using transient reflectivity. The materials exhibit similar responses, characterized by two features, well-resolved in time and energy; the first decays after hundreds of femtoseconds, and the second lasts for nanoseconds. Using Drude-Lorentz fits of the materials' equilibrium reflectance, we show that these are well-represented by a sudden change of the electronic properties (increase of screening or reduction of the plasma frequency) followed by an increase of the Drude scattering rate. This directly connects the transient data to a physical picture in which carriers, after excitation into the conduction band, return to the valence band by sharing excess energy with the phonon bath, resulting in a hot lattice that relaxes through slow diffusive processes. The emerging picture reveals that the sudden electronic reorganization instantaneously modifies the materials' electronic properties on a time scale not compatible with electron-phonon thermalization.

6.
Sci Rep ; 9(1): 1831, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30755644

ABSTRACT

Bulk superconductivity was recently reported in the antiperovskite oxide Sr3-xSnO, with a possibility of hosting topological superconductivity. We investigated the evolution of superconducting properties such as the transition temperature Tc and the size of the diamagnetic signal, as well as normal-state electronic and crystalline properties, with varying the nominal Sr deficiency x0. Polycrystalline Sr3-xSnO was obtained up to x0 = 0:6 with a small amount of SrO impurities. The amount of impurities increases for x0 > 0.6, suggesting phase instability for high deficiency. Mössbauer spectroscopy reveals an unusual Sn4- ionic state in both stoichiometric and deficient samples. By objectively analyzing superconducting diamagnetism data obtained from a large number of samples, we conclude that the optimal x0 lies in the range 0.5 < x0 < 0.6. In all superconducting samples, two superconducting phases appear concurrently that originate from Sr3-xSnO but with varying intensities. These results clarify the Sr deficiency dependence of the normal and superconducting properties of the antiperovskite oxide Sr3-xSnO will ignite future work on this class of materials.

7.
Nat Commun ; 7: 13617, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27941805

ABSTRACT

Investigations of perovskite oxides triggered by the discovery of high-temperature and unconventional superconductors have had crucial roles in stimulating and guiding the development of modern condensed-matter physics. Antiperovskite oxides are charge-inverted counterpart materials to perovskite oxides, with unusual negative ionic states of a constituent metal. No superconductivity was reported among the antiperovskite oxides so far. Here we present the first superconducting antiperovskite oxide Sr3-xSnO with the transition temperature of around 5 K. Sr3SnO possesses Dirac points in its electronic structure, and we propose from theoretical analysis a possibility of a topological odd-parity superconductivity analogous to the superfluid 3He-B in moderately hole-doped Sr3-xSnO. We envision that this discovery of a new class of oxide superconductors will lead to a rapid progress in physics and chemistry of antiperovskite oxides consisting of unusual metallic anions.

8.
Inorg Chem ; 54(3): 845-9, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25299429

ABSTRACT

These quaternary chalcogenides are isostructural, crystallizing in a unique structure type comprising localized Cu clusters and Te(2)(2-) dumbbells. With less than six Cu atoms per formula unit, these materials are p-type narrow-gap semiconductors, according to the balanced formula Ba(2+)(Cu(+))6Q(2-)(Te(2)(2-))3 with Q = S, Se. Encouraged by the outstanding thermoelectric performance of Cu(2-x)Se and the low thermal conductivity of cold-pressed BaCu(5.7)Se(0.6)Te(6.4), we determined the thermoelectric properties of hot-pressed pellets of BaCu(5.9)STe(6) and BaCu(5.9)SeTe(6). Both materials exhibit a high Seebeck coefficient and a low electrical conductivity, combined with very low thermal conductivity below 1 W m(-1) K(-1). Compared to the sulfide-telluride, the selenide-telluride exhibits higher electrical and thermal conductivity and comparable Seebeck coefficient, resulting in superior figure-of-merit values zT, exceeding 0.8 at relatively low temperatures, namely, around 600 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...