Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Hum Behav ; 7(11): 1855-1868, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37985914

ABSTRACT

The ability of humans to create and disseminate culture is often credited as the single most important factor of our success as a species. In this Perspective, we explore the notion of 'machine culture', culture mediated or generated by machines. We argue that intelligent machines simultaneously transform the cultural evolutionary processes of variation, transmission and selection. Recommender algorithms are altering social learning dynamics. Chatbots are forming a new mode of cultural transmission, serving as cultural models. Furthermore, intelligent machines are evolving as contributors in generating cultural traits-from game strategies and visual art to scientific results. We provide a conceptual framework for studying the present and anticipated future impact of machines on cultural evolution, and present a research agenda for the study of machine culture.


Subject(s)
Cultural Evolution , Hominidae , Humans , Animals , Culture , Learning
2.
Front Psychol ; 13: 880375, 2022.
Article in English | MEDLINE | ID: mdl-35756204

ABSTRACT

Cognitive test batteries are widely used in diverse research fields, such as cognitive training, cognitive disorder assessment, or brain mechanism understanding. Although they need flexibility according to their usage objectives, most test batteries are not available as open-source software and are not be tuned by researchers in detail. The present study introduces an open-source cognitive test battery to assess attention and memory, using a javascript library, p5.js. Because of the ubiquitous nature of dynamic attention in our daily lives, it is crucial to have tools for its assessment or training. For that purpose, our test battery includes seven cognitive tasks (multiple-objects tracking, enumeration, go/no-go, load-induced blindness, task-switching, working memory, and memorability), common in cognitive science literature. By using the test battery, we conducted an online experiment to collect the benchmark data. Results conducted on 2 separate days showed the high cross-day reliability. Specifically, the task performance did not largely change with the different days. Besides, our test battery captures diverse individual differences and can evaluate them based on the cognitive factors extracted from latent factor analysis. Since we share our source code as open-source software, users can expand and manipulate experimental conditions flexibly. Our test battery is also flexible in terms of the experimental environment, i.e., it is possible to experiment either online or in a laboratory environment.

3.
Hum Factors ; 64(2): 372-384, 2022 03.
Article in English | MEDLINE | ID: mdl-32809867

ABSTRACT

OBJECTIVE: We investigated how participants controlling a humanoid robotic arm's 3D endpoint position by moving their own hand are influenced by the robot's postures. We hypothesized that control would be facilitated (impeded) by biologically plausible (implausible) postures of the robot. BACKGROUND: Kinematic redundancy, whereby different arm postures achieve the same goal, is such that a robotic arm or prosthesis could theoretically be controlled with less signals than constitutive joints. However, congruency between a robot's motion and our own is known to interfere with movement production. Hence, we expect the human-likeness of a robotic arm's postures during endpoint teleoperation to influence controllability. METHOD: Twenty-two able-bodied participants performed a target-reaching task with a robotic arm whose endpoint's 3D position was controlled by moving their own hand. They completed a two-condition experiment corresponding to the robot displaying either biologically plausible or implausible postures. RESULTS: Upon initial practice in the experiment's first part, endpoint trajectories were faster and shorter when the robot displayed human-like postures. However, these effects did not persist in the second part, where performance with implausible postures appeared to have benefited from initial practice with plausible ones. CONCLUSION: Humanoid robotic arm endpoint control is impaired by biologically implausible joint coordinations during initial familiarization but not afterwards, suggesting that the human-likeness of a robot's postures is more critical for control in this initial period. APPLICATION: These findings provide insight for the design of robotic arm teleoperation and prosthesis control schemes, in order to favor better familiarization and control from their users.


Subject(s)
Robotic Surgical Procedures , Robotics , Biomechanical Phenomena , Humans , Movement , Posture
4.
Nat Commun ; 12(1): 5972, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645800

ABSTRACT

Curiosity-driven learning is foundational to human cognition. By enabling humans to autonomously decide when and what to learn, curiosity has been argued to be crucial for self-organizing temporally extended learning curricula. However, the mechanisms driving people to set intrinsic goals, when they are free to explore multiple learning activities, are still poorly understood. Computational theories propose different heuristics, including competence measures (e.g., percent correct) and learning progress, that could be used as intrinsic utility functions to efficiently organize exploration. Such intrinsic utilities constitute computationally cheap but smart heuristics to prevent people from laboring in vain on unlearnable activities, while still motivating them to self-challenge on difficult learnable activities. Here, we provide empirical evidence for these ideas by means of a free-choice experimental paradigm and computational modeling. We show that while humans rely on competence information to avoid easy tasks, models that include a learning-progress component provide the best fit to task selection data. These results bridge the research in artificial and biological curiosity, reveal strategies that are used by humans but have not been considered in computational research, and introduce tools for probing how humans become intrinsically motivated to learn and acquire interests and skills on extended time scales.


Subject(s)
Cognition/physiology , Exploratory Behavior/physiology , Learning/physiology , Motivation/physiology , Adult , Aged , Computer Simulation , Female , Humans , Male , Middle Aged , Models, Psychological
5.
Front Artif Intell ; 4: 782081, 2021.
Article in English | MEDLINE | ID: mdl-35156011

ABSTRACT

An embodied, autonomous agent able to set its own goals has to possess geometrical reasoning abilities for judging whether its goals have been achieved, namely it should be able to identify and discriminate classes of configurations of objects, irrespective of its point of view on the scene. However, this problem has received little attention so far in the deep learning literature. In this paper we make two key contributions. First, we propose SpatialSim (Spatial Similarity), a novel geometrical reasoning diagnostic dataset, and argue that progress on this benchmark would allow for diagnosing more principled approaches to this problem. This benchmark is composed of two tasks: "Identification" and "Discrimination," each one instantiated in increasing levels of difficulty. Secondly, we validate that relational inductive biases-exhibited by fully-connected message-passing Graph Neural Networks (MPGNNs)-are instrumental to solve those tasks, and show their advantages over less relational baselines such as Deep Sets and unstructured models such as Multi-Layer Perceptrons. We additionally showcase the failure of high-capacity CNNs on the hard Discrimination task. Finally, we highlight the current limits of GNNs in both tasks.

7.
Front Neurorobot ; 14: 555271, 2020.
Article in English | MEDLINE | ID: mdl-33510630

ABSTRACT

Finding algorithms that allow agents to discover a wide variety of skills efficiently and autonomously, remains a challenge of Artificial Intelligence. Intrinsically Motivated Goal Exploration Processes (IMGEPs) have been shown to enable real world robots to learn repertoires of policies producing a wide range of diverse effects. They work by enabling agents to autonomously sample goals that they then try to achieve. In practice, this strategy leads to an efficient exploration of complex environments with high-dimensional continuous actions. Until recently, it was necessary to provide the agents with an engineered goal space containing relevant features of the environment. In this article we show that the goal space can be learned using deep representation learning algorithms, effectively reducing the burden of designing goal spaces. Our results pave the way to autonomous learning agents that are able to autonomously build a representation of the world and use this representation to explore the world efficiently. We present experiments in two environments using population-based IMGEPs. The first experiments are performed on a simple, yet challenging, simulated environment. Then, another set of experiments tests the applicability of those principles on a real-world robotic setup, where a 6-joint robotic arm learns to manipulate a ball inside an arena, by choosing goals in a space learned from its past experience.

8.
Front Neurorobot ; 13: 65, 2019.
Article in English | MEDLINE | ID: mdl-31474846

ABSTRACT

To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.

10.
Nat Rev Neurosci ; 19(12): 758-770, 2018 12.
Article in English | MEDLINE | ID: mdl-30397322

ABSTRACT

In natural behaviour, animals actively interrogate their environments using endogenously generated 'question-and-answer' strategies. However, in laboratory settings participants typically engage with externally imposed stimuli and tasks, and the mechanisms of active sampling remain poorly understood. We review a nascent neuroscientific literature that examines active-sampling policies and their relation to attention and curiosity. We distinguish between information sampling, in which organisms reduce uncertainty relevant to a familiar task, and information search, in which they investigate in an open-ended fashion to discover new tasks. We review evidence that both sampling and search depend on individual preferences over cognitive states, including attitudes towards uncertainty, learning progress and types of information. We propose that, although these preferences are non-instrumental and can on occasion interfere with external goals, they are important heuristics that allow organisms to cope with the high complexity of both sampling and search, and generate curiosity-driven investigations in large, open environments in which rewards are sparse and ex ante unknown.


Subject(s)
Attention/physiology , Brain/physiology , Exploratory Behavior/physiology , Neurosciences , Animals , Cognition/physiology , Humans , Reward
11.
Dev Sci ; 21(4): e12638, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29285864

ABSTRACT

To harness the complexity of their high-dimensional bodies during sensorimotor development, infants are guided by patterns of freezing and freeing of degrees of freedom. For instance, when learning to reach, infants free the degrees of freedom in their arm proximodistally, that is, from joints that are closer to the body to those that are more distant. Here, we formulate and study computationally the hypothesis that such patterns can emerge spontaneously as the result of a family of stochastic optimization processes, without an innate encoding of a maturational schedule. In particular, we present simulated experiments with an arm where a computational learner progressively acquires reaching skills through adaptive exploration, and we show that a proximodistal organization appears spontaneously, which we denote PDFF (Proximo Distal Freezing and Freeing of degrees of freedom). We also compare this emergent organization between different arm morphologies-from human-like to quite unnatural ones-to study the effect of different kinematic structures on the emergence of PDFF.


Subject(s)
Learning/physiology , Motor Skills/physiology , Arm , Biomechanical Phenomena , Exploratory Behavior , Humans , Infant , Movement
12.
Front Neurorobot ; 11: 55, 2017.
Article in English | MEDLINE | ID: mdl-29118699

ABSTRACT

Elaborating an efficient and usable mapping between input commands and output movements is still a key challenge for the design of robotic arm prostheses. In order to address this issue, we present and compare three different control modes, by assessing them in terms of performance as well as general usability. Using an isometric force transducer as the command device, these modes convert the force input signal into either a position or a velocity vector, whose magnitude is linearly or quadratically related to force input magnitude. With the robotic arm from the open source 3D-printed Poppy Humanoid platform simulating a mobile prosthesis, an experiment was carried out with eighteen able-bodied subjects performing a 3-D target-reaching task using each of the three modes. The subjects were given questionnaires to evaluate the quality of their experience with each mode, providing an assessment of their global usability in the context of the task. According to performance metrics and questionnaire results, velocity control modes were found to perform better than position control mode in terms of accuracy and quality of control as well as user satisfaction and comfort. Subjects also seemed to favor quadratic velocity control over linear (proportional) velocity control, even if these two modes did not clearly distinguish from one another when it comes to performance and usability assessment. These results highlight the need to take into account user experience as one of the key criteria for the design of control modes intended to operate limb prostheses.

13.
Behav Brain Sci ; 40: e275, 2017 01.
Article in English | MEDLINE | ID: mdl-29342696

ABSTRACT

Autonomous lifelong development and learning are fundamental capabilities of humans, differentiating them from current deep learning systems. However, other branches of artificial intelligence have designed crucial ingredients towards autonomous learning: curiosity and intrinsic motivation, social learning and natural interaction with peers, and embodiment. These mechanisms guide exploration and autonomous choice of goals, and integrating them with deep learning opens stimulating perspectives.


Subject(s)
Motivation , Thinking , Artificial Intelligence , Deep Learning , Humans , Robotics
14.
Article in English | MEDLINE | ID: mdl-27906505

ABSTRACT

Understanding infant development is one of the great scientific challenges of contemporary science. In addressing this challenge, robots have proven useful as they allow experimenters to model the developing brain and body and understand the processes by which new patterns emerge in sensorimotor, cognitive, and social domains. Robotics also complements traditional experimental methods in psychology and neuroscience, where only a few variables can be studied at the same time. Moreover, work with robots has enabled researchers to systematically explore the role of the body in shaping the development of skill. All told, this work has shed new light on development as a complex dynamical system. WIREs Cogn Sci 2017, 8:e1395. doi: 10.1002/wcs.1395 For further resources related to this article, please visit the WIREs website.


Subject(s)
Child Development , Psychology, Child , Robotics , Computer Simulation , Exploratory Behavior , Humans , Infant , Learning , Models, Biological , Walking
15.
Front Neurorobot ; 10: 10, 2016.
Article in English | MEDLINE | ID: mdl-27752242

ABSTRACT

One of the big challenges in robotics today is to learn from human users that are inexperienced in interacting with robots but yet are often used to teach skills flexibly to other humans and to children in particular. A potential route toward natural and efficient learning and teaching in Human-Robot Interaction (HRI) is to leverage the social competences of humans and the underlying interactional mechanisms. In this perspective, this article discusses the importance of pragmatic frames as flexible interaction protocols that provide important contextual cues to enable learners to infer new action or language skills and teachers to convey these cues. After defining and discussing the concept of pragmatic frames, grounded in decades of research in developmental psychology, we study a selection of HRI work in the literature which has focused on learning-teaching interaction and analyze the interactional and learning mechanisms that were used in the light of pragmatic frames. This allows us to show that many of the works have already used in practice, but not always explicitly, basic elements of the pragmatic frames machinery. However, we also show that pragmatic frames have so far been used in a very restricted way as compared to how they are used in human-human interaction and argue that this has been an obstacle preventing robust natural multi-task learning and teaching in HRI. In particular, we explain that two central features of human pragmatic frames, mostly absent of existing HRI studies, are that (1) social peers use rich repertoires of frames, potentially combined together, to convey and infer multiple kinds of cues; (2) new frames can be learnt continually, building on existing ones, and guiding the interaction toward higher levels of complexity and expressivity. To conclude, we give an outlook on the future research direction describing the relevant key challenges that need to be solved for leveraging pragmatic frames for robot learning and teaching.

16.
Front Psychol ; 7: 470, 2016.
Article in English | MEDLINE | ID: mdl-27148105

ABSTRACT

The classic mapping metaphor posits that children learn a word by mapping it onto a concept of an object or event. However, we believe that a mapping metaphor cannot account for word learning, because even though children focus attention on objects, they do not necessarily remember the connection between the word and the referent unless it is framed pragmatically, that is, within a task. Our theoretical paper proposes an alternative mechanism for word learning. Our main premise is that word learning occurs as children accomplish a goal in cooperation with a partner. We follow Bruner's (1983) idea and further specify pragmatic frames as the learning units that drive language acquisition and cognitive development. These units consist of a sequence of actions and verbal behaviors that are co-constructed with a partner to achieve a joint goal. We elaborate on this alternative, offer some initial parametrizations of the concept, and embed it in current language learning approaches.

17.
Top Cogn Sci ; 8(2): 492-502, 2016 04.
Article in English | MEDLINE | ID: mdl-26969919

ABSTRACT

Infants' own activities create and actively select their learning experiences. Here we review recent models of embodied information seeking and curiosity-driven learning and show that these mechanisms have deep implications for development and evolution. We discuss how these mechanisms yield self-organized epigenesis with emergent ordered behavioral and cognitive developmental stages. We describe a robotic experiment that explored the hypothesis that progress in learning, in and for itself, generates intrinsic rewards: The robot learners probabilistically selected experiences according to their potential for reducing uncertainty. In these experiments, curiosity-driven learning led the robot learner to successively discover object affordances and vocal interaction with its peers. We explain how a learning curriculum adapted to the current constraints of the learning system automatically formed, constraining learning and shaping the developmental trajectory. The observed trajectories in the robot experiment share many properties with those in infant development, including a mixture of regularities and diversities in the developmental patterns. Finally, we argue that such emergent developmental structures can guide and constrain evolution, in particular with regard to the origins of language.


Subject(s)
Exploratory Behavior/physiology , Learning/physiology , Child Development , Epigenesis, Genetic , Evolution, Molecular , Humans , Infant , Robotics
18.
Vision Res ; 117: 81-90, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26518743

ABSTRACT

Saccadic (rapid) eye movements are primary means by which humans and non-human primates sample visual information. However, while saccadic decisions are intensively investigated in instrumental contexts where saccades guide subsequent actions, it is largely unknown how they may be influenced by curiosity - the intrinsic desire to learn. While saccades are sensitive to visual novelty and visual surprise, no study has examined their relation to epistemic curiosity - interest in symbolic, semantic information. To investigate this question, we tracked the eye movements of human observers while they read trivia questions and, after a brief delay, were visually given the answer. We show that higher curiosity was associated with earlier anticipatory orienting of gaze toward the answer location without changes in other metrics of saccades or fixations, and that these influences were distinct from those produced by variations in confidence and surprise. Across subjects, the enhancement of anticipatory gaze was correlated with measures of trait curiosity from personality questionnaires. Finally, a machine learning algorithm could predict curiosity in a cross-subject manner, relying primarily on statistical features of the gaze position before the answer onset and independently of covariations in confidence or surprise, suggesting potential practical applications for educational technologies, recommender systems and research in cognitive sciences. With this article, we provide full access to the annotated database allowing readers to reproduce the results. Epistemic curiosity produces specific effects on oculomotor anticipation that can be used to read out curiosity states.


Subject(s)
Exploratory Behavior/physiology , Fixation, Ocular/physiology , Psychomotor Performance/physiology , Saccades/physiology , Attention/physiology , Female , Humans , Machine Learning , Male , Photic Stimulation , Task Performance and Analysis
19.
PLoS One ; 10(10): e0140732, 2015.
Article in English | MEDLINE | ID: mdl-26489021

ABSTRACT

In this paper we introduce MCA-NMF, a computational model of the acquisition of multimodal concepts by an agent grounded in its environment. More precisely our model finds patterns in multimodal sensor input that characterize associations across modalities (speech utterances, images and motion). We propose this computational model as an answer to the question of how some class of concepts can be learnt. In addition, the model provides a way of defining such a class of plausibly learnable concepts. We detail why the multimodal nature of perception is essential to reduce the ambiguity of learnt concepts as well as to communicate about them through speech. We then present a set of experiments that demonstrate the learning of such concepts from real non-symbolic data consisting of speech sounds, images, and motions. Finally we consider structure in perceptual signals and demonstrate that a detailed knowledge of this structure, named compositional understanding can emerge from, instead of being a prerequisite of, global understanding. An open-source implementation of the MCA-NMF learner as well as scripts and associated experimental data to reproduce the experiments are publicly available.


Subject(s)
Association Learning/physiology , Cognition/physiology , Computer Simulation , Algorithms , Humans , Multimodal Imaging , Pattern Recognition, Visual/physiology , Speech/physiology
20.
PLoS One ; 10(7): e0131491, 2015.
Article in English | MEDLINE | ID: mdl-26131890

ABSTRACT

This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach.


Subject(s)
Algorithms , Brain-Computer Interfaces/standards , Brain/physiology , Evoked Potentials , Adult , Calibration , Humans , Likelihood Functions
SELECTION OF CITATIONS
SEARCH DETAIL
...