Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 452(7183): 88-92, 2008 Mar 06.
Article in English | MEDLINE | ID: mdl-18322534

ABSTRACT

Mycorrhizal symbioses--the union of roots and soil fungi--are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains approximately 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.


Subject(s)
Basidiomycota/genetics , Basidiomycota/physiology , Genome, Fungal/genetics , Mycorrhizae/genetics , Mycorrhizae/physiology , Plant Roots/microbiology , Symbiosis/physiology , Abies/microbiology , Abies/physiology , Basidiomycota/enzymology , Fungal Proteins/classification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation , Genes, Fungal/genetics , Hyphae/genetics , Hyphae/metabolism , Mycorrhizae/enzymology , Plant Roots/physiology , Symbiosis/genetics
2.
J Mol Evol ; 53(2): 80-8, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11479679

ABSTRACT

We describe here the complete sequence (58,507 bp) of the mitochondrial genome of the brown alga Pylaiella littoralis (Ectocarpales). This molecule displays an AT content of 62.0% and contains seventy-nine genes, most of them (73) encoded on one strand. They include the usual mitochondrial set of protist genes and a number of rarer genes. Among these, several ribosomal protein genes and the rn5 were identified. Twenty-four tRNA genes are present in this genome, insufficient to decode all genes. The other conspicuous features of this molecule are: a large (3018 nucleotides) in-frame insertion of unknown function in the cox2 gene; the presence of two different lineages of group II introns, including complete reverse transcriptase-like genes, one in the cox1 and the other in the rnl gene; the concomitant occurrence of a T7-like RNA polymerase and of several well-conserved alpha-proteobacterial-type promoters; and a small nad11 gene, coding for the first domain only of this NADH dehydrogenase subunit. Altogether, the mitochondrial genome of P. littoralis exhibits both alpha-proteobacterial characteristics and evidences of the independent integration of several exogenous DNA fragments.


Subject(s)
DNA, Mitochondrial/genetics , Phaeophyceae/genetics , Algal Proteins/genetics , Base Sequence , DNA, Mitochondrial/chemistry , DNA-Directed RNA Polymerases/genetics , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Ribosomal Proteins/genetics , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...