Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 9344, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927245

ABSTRACT

Despite its epidemiological importance, the time Plasmodium parasites take to achieve development in the vector mosquito (the extrinsic incubation period, EIP) remains poorly characterized. A novel non-destructive assay designed to estimate EIP in single mosquitoes, and more broadly to study Plasmodium-Anopheles vectors interactions, is presented. The assay uses small pieces of cotton wool soaked in sugar solution to collect malaria sporozoites from individual mosquitoes during sugar feeding to monitor infection status over time. This technique has been tested across four natural malaria mosquito species of Africa and Asia, infected with Plasmodium falciparum (six field isolates from gametocyte-infected patients in Burkina Faso and the NF54 strain) and across a range of temperatures relevant to malaria transmission in field conditions. Monitoring individual infectious mosquitoes was feasible. The estimated median EIP of P. falciparum at 27 °C was 11 to 14 days depending on mosquito species and parasite isolate. Long-term individual tracking revealed that sporozoites transfer onto cotton wool can occur at least until day 40 post-infection. Short individual EIP were associated with short mosquito lifespan. Correlations between mosquito/parasite traits often reveal trade-offs and constraints and have important implications for understanding the evolution of parasite transmission strategies.


Subject(s)
Anopheles/parasitology , Host-Parasite Interactions , Mosquito Vectors/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/isolation & purification , Animals , Feeding Behavior , Female , Species Specificity
2.
Parasit Vectors ; 13(1): 266, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32434542

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) is a vector control strategy relying on the mass release of sterile males into wild vector populations. Current sex separation techniques are not fully efficient and could lead to the release of a small proportion of females. It is therefore important to evaluate the effect of irradiation on the ability of released females to transmit pathogens. This study aimed to assess the effect of irradiation on the survival and competence of Anopheles arabiensis females for Plasmodium falciparum in laboratory conditions. METHODS: Pupae were irradiated at 95 Gy of gamma-rays, and emerging females were challenged with one of 14 natural isolates of P. falciparum. Seven days post-blood meal (dpbm), irradiated and unirradiated-control females were dissected to assess the presence of oocysts, using 8 parasite isolates. On 14 dpbm, sporozoite dissemination in the head/thorax was also examined, using 10 parasites isolates including 4 in common with the 7 dpbm dissection (oocyst data). The survivorship of irradiated and unirradiated-control mosquitoes was monitored. RESULTS: Overall, irradiation reduced the proportion of mosquitoes infected with the oocyst stages by 17% but this effect was highly inconsistent among parasite isolates. Secondly, there was no significant effect of irradiation on the number of developing oocysts. Thirdly, there was no significant difference in both the sporozoite infection rate and load between the irradiated and unirradiated-control mosquitoes. Fourthly, irradiation had varying effects on female survival with either a negative effect or no effect. CONCLUSIONS: The effect of irradiation on mosquito competence strongly varied among parasite isolates. Because of such isolate variability and, the fact that different parasite isolates were used to collect oocyst and sporozoite data, the irradiation-mediated reduction of oocyst prevalence was not confirmed for the sporozoite stages. Our data indicate that irradiated female An. arabiensis could contribute to malaria transmission, and highlight the need for perfect sexing tools, which would prevent the release of females as part of SIT programmes.


Subject(s)
Anopheles/parasitology , Anopheles/radiation effects , Gamma Rays , Mosquito Control/methods , Plasmodium falciparum/physiology , Animals , Anopheles/physiology , Blood , Feeding Behavior , Female , Mosquito Vectors/parasitology , Mosquito Vectors/radiation effects , Oocysts/physiology , Pupa/radiation effects
3.
J Med Entomol ; 56(5): 1312-1317, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31329914

ABSTRACT

BACKGROUND: Large distribution of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) contributed to a significant decrease in malarial mortality. Unfortunately, large insecticide resistance in malaria vectors occurred and is a threat to the future use of these control approaches. The purpose of this study was to explore a new approach for vector control. Patches containing Bacillus thuringiensis var. israelensis (Bti) solubilized Cry toxins mixed with sugar were developed and tested in the laboratory with pyrethroid-resistant Anopheles gambiae s.l. using tunnel tests. METHODS: Mosquitoes were released at 6:00 p.m. into a large tunnel separated by a bed net, perforated with nine holes, from a smaller chamber with a guinea pig. Nine Bti sugar patches (BSPs) were attached to the bed net between the nine holes. Fourteen hours later (8:00 a.m.), mosquitoes were collected from the tunnel and the guinea pig chamber. Live females were kept in cups and were fed a sugar solution (5%) for 72 h and delayed mortality was followed. The results were reported as passing, blood fed and mortality rates. RESULTS: Mosquito populations that are resistant to the insecticides in the bed net, exhibited high mortality (60%) in the presence of the BSPs. Untreated bed nets with patches in the tunnel test killed 66-95% of the mosquitoes that landed and untreated bed nets were superior to treated bed nets. CONCLUSION: BSPs efficiently kill resistant mosquitoes that land on treated and untreated bed nets and thus could ultimately reduce the number of vector-borne malarial mosquitoes.


Subject(s)
Anopheles , Bacillus thuringiensis/chemistry , Insecticide Resistance , Mosquito Control/methods , Pest Control, Biological/methods , Pheromones/pharmacology , Sugars/pharmacology , Animals , Anopheles/physiology , Chemotaxis , Female
4.
BMC Microbiol ; 18(Suppl 1): 153, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30470187

ABSTRACT

BACKGROUND: Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal. RESULTS: The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected. CONCLUSION: The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.


Subject(s)
Cytomegalovirus/isolation & purification , Trypanosoma/isolation & purification , Tsetse Flies/microbiology , Tsetse Flies/parasitology , Tsetse Flies/virology , Wolbachia/isolation & purification , Africa, Western , Animals , Cytomegalovirus/pathogenicity , Geography , Ghana , Humans , Insect Vectors/microbiology , Insect Vectors/parasitology , Insect Vectors/virology , Prevalence , Spiroplasma/isolation & purification , Symbiosis
5.
Malar J ; 16(1): 190, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28482891

ABSTRACT

BACKGROUND: Malaria vectors have acquired widespread resistance throughout sub-Saharan Africa to many of the currently used insecticides. Hence, there is an urgent need to develop alternative strategies including the development of new insecticides for effective management of insecticide resistance. To maintain progress against malaria, it is necessary to identify other residual insecticides for mosquito nets. In the present WHOPES phase II analogue study, the utility of chlorfenapyr, a pyrrole class insecticide mixed with alpha-cypermethrin on a long-lasting mosquito bed net was evaluated against Anopheles gambiae s.l. METHODS: Bed nets treated with chlorfenapyr and alpha-cypermethrin and mixture of both compounds were tested for their efficacy on mosquitoes. Washed (20 times) and unwashed of each type of treated nets and were tested according to WHOPES guidelines. Efficacy of nets were expressed in terms of blood-feeding inhibition rate, deterrence, induced exophily and mortality rate. The evaluation was conducted in experimental huts of Vallée du Kou seven (VK7) in Burkina Faso (West Africa) following WHOPES phase II guidelines. In addition, a WHOPES phase I evaluation was also performed. RESULTS: Mixture treated nets killed significantly (P < 0.05) more mosquitoes than solo alpha-cypermethrin nets, unwashed and washed. Proportionally, this equated to mortalities of 78 and 76% (for mixture nets) compared to only 17 and 10% (for solo alpha-cypermethrin) to An. gambiae, respectively. In contrast mixture net proportions were not significantly (P > 0.05) different from nets treated with chlorfenapyr 200 mg/m2 unwashed (86%). The washed and unwashed nets treated with the mixtures resulted in personal protection against An. gambiae s.l. biting 34 and 44%. In contrast the personal protection observed for washed and unwashed alpha-cypermethrin treated nets generated (14 and 24%), and chlorfenapyr solo treated net was rather low (22%). CONCLUSION: Among all nets trialled, the combination of chlorfenapyr and alpha-cypermethrin on bed nets provided better mortality in phase II after 20 washes. Results suggest that this combination could be a potential insecticide resistance management tool for preventing malaria transmission in areas compromised by the spread of pyrethroid resistance.


Subject(s)
Anopheles , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides , Mosquito Control , Pyrethrins , Animals , Burkina Faso
SELECTION OF CITATIONS
SEARCH DETAIL
...