Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 12: 113, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22827925

ABSTRACT

BACKGROUND: Cowpea is a highly inbred crop. It is part of a crop-weed complex, whose origin and dynamics is unknown, which is distributed across the African continent. This study examined outcrossing rates and genetic structures in 35 wild cowpea (Vigna unguiculata ssp. unguiculata var. spontanea) populations from West Africa, using 21 isozyme loci, 9 of them showing polymorphism. RESULTS: Outcrossing rates ranged from 1% to 9.5% (mean 3.4%), which classifies the wild cowpea breeding system as primarily selfing, though rare outcrossing events were detected in each population studied. Furthermore, the analyses of both the genetic structure of populations and the relationships between the wild and domesticated groups suggest possibilities of gene flow that are corroborated by field observations. CONCLUSIONS: As expected in a predominantly inbred breeding system, wild cowpea shows high levels of genetic differentiation and low levels of genetic diversity within populations. Gene flow from domesticated to wild cowpea does occur, although the lack of strong genetic swamping and modified seed morphology in the wild populations suggest that these introgressions should be rare.


Subject(s)
Fabaceae/genetics , Gene Flow , Genetic Structures/genetics , Genetic Variation , Africa, Western , Crosses, Genetic , Genetics, Population , Genotype , Inbreeding
3.
Genome ; 45(5): 787-93, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12416610

ABSTRACT

Amplified fragment length polymorphism (AFLP) analysis was used in combination with bulked segregant analysis (BSA) to identify molecular markers linked to two cowpea (Vigna unguiculata (L.) Walp.) genes conferring resistance to Striga gesnerioides race 1. After AFLP analysis of an F2 population derived from a cross between the resistant cultivar Gorom and the susceptible cultivar Tvx 3236, seven AFLP markers were identified that are linked to Rsg3, the gene conferring race I resistance in 'Gorom'. The distances between these markers and Rsg3 ranged from 9.9 to 2.5 cM, with two markers, E-AGA/M-CTA460 and E-AGA/M-CAG300, flanking Rsg3 at 2.5 and 2.6 cM, respectively. Analysis of a second F2 population derived from the cross between 'Tvx 3236' and the resistant cultivar IT81D-994 identified five AFLP markers linked to the race 1 resistance gene 994-Rsg present in 'IT81D-994'. The two markers showing the tightest linkage to the 994-Rsg locus were E-AAG/M-AAC450 and E-AAG/M-AAC150 at 2.1 and 2.0 cM, respectively. Two of the markers linked to 994-Rsg, E-AGA/M-CAG300 and E-AGA/M-CAG450, were also linked to Rsg3. The identification of molecular markers in common between the two sources of race 1 resistance suggests that either Striga resistance genes are clustered in these plants or that these loci are allelic. Mapping of the resistance loci within the cowpea genome revealed that three markers linked to Rsg3 and (or) 994-Rsg are located on linkage group 6.


Subject(s)
Fabaceae/genetics , Fabaceae/parasitology , Striga/physiology , Chromosome Mapping , Crosses, Genetic , Genes, Plant , Genetic Linkage , Genetic Markers , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...