Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36943564

ABSTRACT

The objective of this work is to study the adsorption capacity of a natural and low-cost material prepared from argan waste treated with H3PO4 towards two dyes of different molecular charges and presenting an acute toxicity, the methyl orange (MO, anionic dye) and the methylene blue (MB, cationic dye). The prepared adsorbent was characterized by SEM, EDX, FTIR, and BET specific surface. These analyses showed the presence of C (42%), O (55%), and P (3%) and a remarkable difference between the morphology of the precursor and that of the obtained material with a specific surface of 475 m2/g and a very porous structure as well as the main functional groups, O-H, C=O, and C-H. The influence of the pH showed a maximum adsorption at pH =2 for MO and at pH = 10 for MB. Investigation of the effect of time on the adsorption of anionic and cationic dyes revealed that the contact time at equilibrium was 240 and 180 min, respectively. The isotherms that best fit the adsorption of MO and MB are the Langmuir model and the Freundlich model respectively. The kinetic study showed that the experimental data are in agreement with the pseudo-second-order model. Regeneration of the saturated material was also studied for the probability of reusing the adsorbent in many experiments. The valorization of argan waste into activated carbon using H3PO4 has allowed to obtain an effective adsorbent for the removal of anionic and cationic dyes and create an added value for environmental sustainability.

2.
Article in English | MEDLINE | ID: mdl-36905542

ABSTRACT

In order to develop materials able to guarantee optimal characteristics in terms of environmental compatibility, abundance, and photoactivity, zinc telluride (ZnTe) has become a great candidate for optoelectronic and photovoltaic device applications. In this work, on the basis of electrochemical techniques including cyclic voltammetry and chronoamperometry, it was found that the electrodeposition of zinc telluride (ZnTe) on indium tin oxide substrate (ITO) is a quasi-reversible reaction controlled by the diffusion process. The nucleation and growth mechanism follows the instantaneous three-dimensional process according to Scharifker and Hill model. The crystallographic structure and film morphology were studied by XRD and SEM analyses, respectively. ZnTe films have a cubic crystal structure, and they are characterized by good homogeneity. The optical measurements of the deposited films were performed, and a direct energy gap of 2.39 eV was determined by UV-visible spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...