Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroreport ; 35(5): 291-298, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38407865

ABSTRACT

OBJECTIVE: Orientation selectivity is an emergent property of visual neurons across species with columnar and noncolumnar organization of the visual cortex. The emergence of orientation selectivity is more established in columnar cortical areas than in noncolumnar ones. Thus, how does orientation selectivity emerge in noncolumnar cortical areas after an adaptation protocol? Adaptation refers to the constant presentation of a nonoptimal stimulus (adapter) to a neuron under observation for a specific time. Previously, it had been shown that adaptation has varying effects on the tuning properties of neurons, such as orientation, spatial frequency, motion and so on. BASIC METHODS: We recorded the mouse primary visual neurons (V1) at different orientations in the control (preadaptation) condition. This was followed by adapting neurons uninterruptedly for 12 min and then recording the same neurons postadaptation. An orientation selectivity index (OSI) for neurons was computed to compare them pre- and post-adaptation. MAIN RESULTS: We show that 12-min adaptation increases the OSI of visual neurons ( n  = 113), that is, sharpens their tuning. Moreover, the OSI postadaptation increases linearly as a function of the OSI preadaptation. CONCLUSION: The increased OSI postadaptation may result from a specific dendritic neural mechanism, potentially facilitating the rapid learning of novel features.


Subject(s)
Orientation , Visual Cortex , Animals , Mice , Orientation/physiology , Photic Stimulation/methods , Neurons/physiology , Visual Cortex/physiology , Learning
2.
J Neurophysiol ; 128(4): 946-962, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36130163

ABSTRACT

For medical and fundamental reasons, we need to understand adult brain plasticity at several levels: structural, physiological, and behavioral. Historically, brain plasticity has been mostly investigated by weakening or removing sensory inputs. The visual system has been extensively used because diminishing visual inputs, i.e., visual deprivation-induced plasticity, permits more tractable findings. The present review is centered on the reverse strategy, by imposing a novel stimulus, i.e., adaptation-induced plasticity. Adaptation refers to the constant (milliseconds to hours) presentation of a nonoptimal stimulus (adapter) within the receptive field (RF, spatial area that modulates neuronal firing) of the neuron under observation. We specifically focus on how adaptation impacts the tuning of visual neurons with other associated properties. After adaptation, visual cortical neurons respond robustly to the adapter (before adaptation it typically evokes feeble responses) by developing alternate tuning curves that outlast the adaptation time. Here, with dendritic structure as foundation, we synthesize a push-pull mechanism of development and acquisition of novel tuning curves following adaptation. We then explain how these changes apply at the global level across different brain regions and species with a short description of underlying neurochemical changes. Finally, we discuss physiopathological consequences and conclude with some gaps and questions that need to be addressed to further comprehend such neuroplasticity.


Subject(s)
Visual Cortex , Adaptation, Physiological/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Photic Stimulation , Visual Cortex/physiology
3.
Eur J Neurosci ; 53(2): 588-600, 2021 01.
Article in English | MEDLINE | ID: mdl-32916020

ABSTRACT

Neuron orientation selectivity, otherwise known as the ability to respond optimally to a preferred orientation, has been extensively described in both primary and secondary visual cortices. This orientation selectivity, conserved through all cortical layers of a given column, is the primary basis for cortical organization and functional network emergence. While this selectivity is programmed and acquired since critical period, it has always been believed that in a mature brain, neurons' inherent functional features could not be changed. However, a plurality of studies has investigated the mature brain plasticity in V1, by changing the cells' orientation selectivity with visual adaptation. Using electrophysiological data in both V1 and V2 areas, this study aims to investigate the effects of adaptation on simultaneously recorded cells in both areas. Visual adaptation had an enhanced effect on V2 units, as they exhibited greater tuning curve shifts and a more pronounced decrease of their OSI. Not only did adaptation have a different effect on V2 neurons, it also elicited a different response depending on the neuron's cortical depth. Indeed, in V2, cells in layers II-III were more affected by visual adaptation, while infragranular layer V units exhibited little to no effect at all.


Subject(s)
Visual Cortex , Adaptation, Physiological , Animals , Cats , Neuronal Plasticity , Neurons , Orientation , Photic Stimulation , Visual Pathways
4.
Neurosci Lett ; 620: 14-9, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27033667

ABSTRACT

Gamma oscillations are ubiquitous in brain and are believed to be inevitable for information processing in brain. Here, we report that distinct bands (low, 30-40Hz and high gamma, 60-80Hz) of stimulus-triggered gamma oscillations are systematically linked to the orientation selectivity index (OSI) of neurons in the cat primary visual cortex. The gamma-power is high for the highly selective neurons in the low-gamma band, whereas it is high for the broadly selective neurons in the high-gamma band. We suggest that the low-gamma band is principally implicated in feed-forward excitatory flow, whereas the high-gamma band governs the flow of this excitation.


Subject(s)
Gamma Rhythm , Neurons/physiology , Visual Cortex/physiology , Action Potentials , Animals , Cats , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...