Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38921891

ABSTRACT

Ultra-small magnetic Fe3O4 nanoparticles are successfully synthesized in basic solutions by using the radiolytic method of the partial reduction in FeIII in the presence of poly-acrylate (PA), or by using the coprecipitation method of FeIII and FeII salts in the presence of PA. The optical, structural, and magnetic properties of the nanoparticles were examined using UV-Vis absorption spectroscopy, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and SQUID magnetization measurements. The HRTEM and XRD analysis confirmed the formation of ultra-small magnetite nanoparticles in a spinel structure, with a smaller size for radiation-induced particles coated by PA (5.2 nm) than for coprecipitated PA-coated nanoparticles (11 nm). From magnetization measurements, it is shown that the nanoparticles are superparamagnetic at room temperature. The magnetization saturation value Ms = 50.1 A m2 kg-1 of radiation-induced nanoparticles at 60 kGy is higher than Ms = 18.2 A m2 kg-1 for coprecipitated nanoparticles. Both values are compared with nanoparticles coated with other stabilizers in the literature.

2.
Sci Rep ; 9(1): 9156, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31235777

ABSTRACT

As a metastable phase, vaterite is involved in the first step of crystallization of several carbonate-forming systems including the two stable polymorphs calcite and aragonite. Its complete structural determination would consequently shed important light to understand scaling formation and biomineralization processes. While vaterite's hexagonal substructure (a0 ~ 4.1 Å and c0 ~ 8.5 Å) and the organization of the carbonate groups within a single layer is known, conflicting interpretations regarding the stacking sequence remain and preclude the complete understanding of the structure. To resolve the ambiguities, we performed precession electron diffraction tomography (PEDT) to collect single crystal data from 100 K to the ambient temperature. The structure was solved ab initio and described over all the temperature range using a unified modulated structure model in the superspace group C12/c1(α0γ)00 with a = a0 = 4.086(3) Å, b = [Formula: see text]a0 = 7.089(9) Å, c = c0 = 8.439(9) Å, α = ß = γ = 90° and q = [Formula: see text]a* + γc*. At 100 K the model presents a pure 4-layer stacking sequence with γ = [Formula: see text] whereas at the ambient temperature, ordered stacking faults are introduced leading to γ < [Formula: see text]. The model was refined against PEDT data using the dynamical refinement procedure including modulation and twinning as well as against x-ray powder data by the Rietveld refinement.

3.
Luminescence ; 30(8): 1336-43, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25828930

ABSTRACT

Europium trivalent (Eu(3+))-doped Y2O3 nanopowders of different concentrations (0.5, 2.5, 5 or 7 at.%) were synthesized by the sol-gel method, at different pH values (pH 2, 5 or 8) and annealing temperatures (600 °C, 800 °C or 1000 °C). The nanopowders samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) and steady state photoluminescence spectroscopy. The effect of pH of solution and annealing temperatures on structural, morphological and photoluminescence properties of Eu(3+)-doped Y2O3 were studied and are discussed. It was found that the average crystallite size of the nanopowders increased with increasing pH and annealing temperature values. The Y2O3:Eu(3+) material presented different morphology and its evolution depended on the pH value and the annealing temperature. Activation energies at different pH values were determined and are discussed. Under ultraviolet (UV) light excitation, Y2O3:Eu(3+) showed narrow emission peaks corresponding to the (5)D0- (7) FJ (J = 0, 1, 2 and 3) transitions of the Eu(3+) ion, with the most intense red emission at 611 assigned to forced electric dipole (5)D0 → (7)F2. The emission intensity became more intense with increasing annealing temperature and pH values, related to the improvement of crystalline quality. For the 1000 °C annealing temperature, the emission intensity presented a maximum at pH 5 related to the uniform cubic-shaped particles. It was found that for lower annealing temperatures (small crystallite size) the CTB (charge transfer band) position presented a red shift.


Subject(s)
Europium/chemistry , Luminescent Agents/chemistry , Nanoparticles/chemistry , Yttrium/chemistry , Luminescent Agents/chemical synthesis , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...