Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(41): 48060-48071, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37788359

ABSTRACT

The efficient and cost-effective production of green hydrogen is essential to decarbonize heavily polluting sectors such as transportation and heavy manufacturing industries such as metal refining. Polymer electrolyte membrane water electrolysis (PEMWE) is the most promising and rapidly maturing technology for producing green hydrogen at a scale and on demand. However, substantial cost reduction by lowering precious metal catalyst loadings and efficiency improvement is necessary to lower the cost of the produced hydrogen. Porous transport layers (PTLs) play a major role in influencing the PEMWE efficiency and catalyst utilization. Several studies have projected that the use of microporous layers (MPLs) on PTLs can improve the efficiency of PEMWEs, but very limited literature exists on how MPLs affect anodic interfacial properties and oxygen transport in PTLs. In this study, for the first time, we use X-ray microtomography and innovative image processing techniques to elucidate the oxygen flow patterns in PTLs with varying MPL thicknesses. We used stained water to improve contrast of oxygen in PTLs and demonstrate visualization of time averaged oxygen flow patterns. The results show that PTLs with MPLs significantly improve interfacial contact by almost 20% as compared to single layer sintered PTL. For the single layer PTL without MPL, the pore volume utilization for oxygen flow is low and the oxygen follows a viscous fingering flow regime. With MPLs, the pore volume utilization is higher, and the number of oxygen transport pathways is increased significantly. MPLs were also shown to suppress capillary fingering and transition oxygen flow to the viscous fingering regime, which has been proven to decrease site masking effects. Finally, durability tests showed the least voltage degradation for thin MPL and thicker MPLs run into mass transport limitations. Based on these findings, PTL/MPL design optimization strategies are proposed for enabling low catalyst loadings and improving durability.

2.
Annu Rev Chem Biomol Eng ; 10: 219-239, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31173524

ABSTRACT

Hydrogen is an important part of any discussion on sustainability and reduction in emissions across major energy sectors. In addition to being a feedstock and process gas for many industrial processes, hydrogen is emerging as a fuel alternative for transportation applications. Renewable sources of hydrogen are therefore required to increase in capacity. Low-temperature electrolysis of water is currently the most mature method for carbon-free hydrogen generation and is reaching relevant scales to impact the energy landscape. However, costs still need to be reduced to be economical with traditional hydrogen sources. Operating cost reductions are enabled by the recent availability of low-cost sources of renewable energy, and the potential exists for a large reduction in capital cost withmaterial and manufacturing optimization. This article focuses on the current status and development needs by component for the low-temperature electrolysis options.


Subject(s)
Electrolysis/methods , Hydrogen/chemistry , Renewable Energy , Anion Exchange Resins/chemistry , Catalysis , Electrolysis/instrumentation , Hydroxides/chemistry , Membranes, Artificial , Porosity , Potassium Compounds/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...