Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 598: 1037-1049, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28476077

ABSTRACT

The granitic Uhlirska headwater catchment with a size of 1.78km2 is located in the Jizera Mountains in the northern Czech Republic and received among the highest inputs of anthropogenic acid depositions in Europe. An analysis of sulphate (SO42-) distribution in deposition, soil water, stream water and groundwater compartments allowed to establish a SO42- mass-balance (deposition input minus surface water export) and helped to evaluate which changes occurred since the last evaluation of the catchment in 1997. The determined SO42- concentrations decreased in the following order: wetland groundwater>groundwater from 20m below ground level (bgl)>groundwater from 30m bgl>stream water>groundwater from10m bgl>hillslope soil water>wetland soil water>bulk deposition with median values of 0.24, 0.21, 0.17, 0.15, 0.11, 0.07, 0.03 and 0.01mmolL-1, respectively. Our results show that average deposition reductions of 62% did not result in equal changes of the sulphate mass-balance, which changed by only 47%. This difference occurs because sulphate originates from internal sources such as the groundwater and soil water. The Uhlirska catchment is subject to delayed recovery from anthropogenic acid depositions and remains a net source of stored sulphur even after three decades of declining inputs. The wetland groundwater and soil water provide environmental memories of legacy pollutant sulphate. Elevated stream water sulphate concentrations after the unusually dry summer 2015 imply importance of weather and climate patterns for future recovery from acidification.

2.
Sci Total Environ ; 536: 1019-1028, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26094110

ABSTRACT

Nitrogen (N) deposition is globally considered as a major threat to ecosystem functioning with important consequences for biodiversity, carbon sequestration and N retention. Lowered N retention as manifested by elevated concentrations of inorganic N in surface waters indicates ecosystem N saturation. Nitrate (NO3) concentrations in runoff from semi-natural catchments typically show an annual cycle, with low concentrations during the summer and high concentrations during the winter. Process-oriented catchment-scale biogeochemical models provide tools for simulation and testing changes in surface water and soil chemistry in response to changes in sulphur (S) and N deposition and climate. Here we examine the ability of MAGIC to simulate the observed monthly as well as the long-term trends over 10-35 years of inorganic N concentrations in streamwaters from four monitored headwater catchments in Europe: Certovo Lake in the Czech Republic, Afon Gwy at Plynlimon, UK, Storgama, Norway and G2 NITREX at Gårdsjön, Sweden. The balance between N inputs (mineralization+deposition) and microbial immobilization and plant uptake defined the seasonal pattern of NO3 leaching. N mineralization and N uptake were assumed to be governed by temperature, described by Q10 functions. Seasonality in NO3 concentration and fluxes were satisfactorily reproduced at three sites (R2 of predicted vs. modelled concentrations varied between 0.32 and 0.47 and for fluxes between 0.36 and 0.88). The model was less successful in reproducing the observed NO3 concentrations and fluxes at the experimental N addition site G2 NITREX (R2=0.01 and R2=0.19, respectively). In contrast to the three monitored sites, Gårdsjön is in a state of change from a N-limited to N-rich ecosystem due to 20 years of experimental N addition. At Gårdsjön the measured NO3 seasonal pattern did not follow typical annual cycle for reasons which are not well understood, and thus not simulated by the model. CAPSULE: The MAGIC model is able to simulate NO3 leaching on a monthly as well as an annual basis, and thus to reproduce the seasonal and short-term variations in N dynamics.


Subject(s)
Environmental Monitoring , Models, Chemical , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Czech Republic , Norway , Sweden
3.
Environ Pollut ; 184: 271-82, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24077255

ABSTRACT

Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the 'MADOC' model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised.


Subject(s)
Models, Chemical , Nitrogen/analysis , Soil/chemistry , Sulfur/analysis , Carbon/analysis , Hydrogen-Ion Concentration
4.
Environ Pollut ; 165: 158-66, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22459669

ABSTRACT

We present a new formulation of the acidification model MAGIC that uses decomposer dynamics to link nitrogen (N) cycling to carbon (C) turnover in soils. The new model is evaluated by application to 15-30 years of water chemistry data at three coniferous-forested sites in the Czech Republic where deposition of sulphur (S) and N have decreased by >80% and 40%, respectively. Sulphate concentrations in waters have declined commensurately with S deposition, but nitrate concentrations have shown much larger decreases relative to N deposition. This behaviour is inconsistent with most conceptual models of N saturation, and with earlier versions of MAGIC which assume N retention to be a first-order function of N deposition and/or controlled by the soil C/N ratio. In comparison with earlier versions, the new formulation more correctly simulates observed short-term changes in nitrate leaching, as well as long-term retention of N in soils. The model suggests that, despite recent deposition reductions and recovery, progressive N saturation will lead to increased future nitrate leaching, ecosystem eutrophication and re-acidification.


Subject(s)
Models, Chemical , Nitrogen/analysis , Soil Pollutants/analysis , Carbon Cycle , Environmental Monitoring , Nitrogen Cycle , Soil/chemistry
5.
Sci Total Environ ; 408(4): 856-64, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19914682

ABSTRACT

The precipitation chemistry, deposition, nutrient pools and composition of soils and soil water, as well as an estimate of historical deposition of sulphur (S) and inorganic nitrogen (N) for the period 1860-2008, were determined in primeval deciduous and coniferous forests at the sites Javornik and Pop Ivan, respectively. Measured S throughfall inputs of 10 kg ha(-1)year(-1) in 2008 were similar to those estimated for the period 1900-1950 at both sites. The highest estimated S inputs were in the 1980s. Measured bulk deposition of N in 2008 was lower at Pop Ivan (5.6 kg ha(-1)year(-1)) compared to Javornik (12 kg ha(-1)year(-1)). Significantly lower NO(3) deposition was both estimated and measured at Pop Ivan. Higher soil base cation concentrations were observed at well-buffered Javornik underlain by flysch (Ca pool of 2046 kg ha(-1) and base saturation of 29%) compared to Pop Ivan underlain by crystalline schist (Ca pool of 186 kg ha(-1) and base saturation of 6.5%). The soil pool of organic carbon (C) was higher at Pop Ivan (212 t ha(-1)) compared to Javornik (127 t ha(-1)). The C concentration was positively correlated with organic N in the soil (p<0.001) at both sites, but the mass average C/N ratio in the forest floor was lower at Javornik (22) than at Pop Ivan (26). High N leaching of 17 kg ha(-1)year(-1) at the 90 cm depth was measured in the soil water at Javornik, suggesting high mineralization and nitrification rates in old growth deciduous forests in the area. Despite relatively low Al concentrations in the soil water, a low soil water Bc/Al ratio (0.9) (Bc=Ca+Mg+K) was found in the upper mineral soil at Pop Ivan. This suggests that the spruce forest ecosystems in the area are vulnerable to anthropogenic acidification and to the adverse effects of Al on forest root systems.


Subject(s)
Acid Rain , Air Pollutants/analysis , Ecosystem , Soil Pollutants/analysis , Trees , Environmental Monitoring , Nitrates/analysis , Slovakia , Soil/analysis , Sulfur Compounds/analysis , Ukraine
SELECTION OF CITATIONS
SEARCH DETAIL
...