Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Microbiol ; 204(12): 704, 2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36371744

ABSTRACT

The investigation of lignocellulolytic catalysts is an important feature to face the challenges of lignocellulosic biomass valorization. In central Morocco, fungi were isolated from decaying wood, soil, olive crushing by-products and their compost. One hundred fifty-five isolates were submitted to a selective screening, which served to distinguish 83% of lignocellulolytic isolates. Then, a collection of 56 fungi was subjected to morphological and molecular identification with the ITS5 and ITS4 primers. This approach showed that 45% of the fungal population belonged to the genus Penicillium, followed by Aspergillus 14%, and Fusarium 11%. Alternaria, Trichoderma, Paecilomyces, Cladosporium, Trichocladium, Circinella, and Doratomyces genera are founded with a minority occurrence. Finally, validation of the enzymatic profile was done for 20 isolates, by testing their enzymatic performance on a liquid medium in the presence of cellulose, lignin, and olive pomace. The maximum protein production of 788 µg ml-1 was reached by an Alternaria strain, which produced also 10.6 IU ml-1 of endoglucanase. Thus, a ß-glucosidase activity of 5.1 IU ml-1 was obtained by a Penicillium strain isolated from decaying wood. Regarding ligninolytic activities, olive pomace was the most suitable substrate to detect these activities. Decaying wood strains presented the most remarkable results with 1.1 IU ml-1, 0.7 IU ml-1 et 0.3 IU ml-1 for laccase, LiP and MnP, respectively. The use of the selected fungi and olive pomace as local biomass are important factors for the development of green processes targeting the valorization of this by-product into high-value molecules.


Subject(s)
Olea , Penicillium , Trichoderma , Lignin/metabolism , Olea/microbiology , Morocco , Penicillium/genetics , Penicillium/metabolism , Alternaria/metabolism , Fungi
2.
Heliyon ; 7(2): e06169, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33644461

ABSTRACT

Listeria monocytogenes is a pathogen contaminated food, it is the cause of listeriosis worldwide. The aims of this study were to investigate the occurrence, antimicrobial resistance, serotyping and virulence genes of L. monocytogenes isolated from foods in Meknes city of Morocco. From June 2017 to May 2018, 520 food samples were randomly collected from a traditional market and two overcrowded popular neighborhoods (Lahdim and Hamria) and subjected to the detection of L. monocytogenes. Then, the antimicrobial susceptibility of the isolated strains were evaluated using the standard disk diffusion method and the determination of serotypes and virulence genes was performed by PCR. The results showed the detection of L. monocytogenes in fifteen (2.9%) of 520 samples, including three (5.7%) isolates in traditional whey, raw minced meat and raw sausage, two (3.8%) in raw milk and one (1.9%) in smen (traditional butter), raw bovine meat, raw poultry meat and raw fish, while salads and rayeb (traditional coagulated milk) were not contaminated. Among the fifteen isolated L. monocytogenes, nine (60%) belonged to the serogroup (1/2a, 1/2c, 3a and 3c), two (13.3%) belonged to the serogroup (1/2b, 3b, 4b and 4d) and four (26.6%) do not belong to any studied serogroup. Furthermore, fifteen (100%) isolates showed the presence of actA gene, fourteen (93.3%) harbored hlyA, prfA and plcB genes, thirteen (86.7%) carried inlA and inlC genes and twelve (80%) showed inlJ gene. The antimicrobial susceptibility analysis showed that the isolated strains were more resistant to amoxicillin/clavulanic acid (67.0%), erythromycin (60.0%), sulphamethoxazole (40.0%), ampicillin and sulphamethoxazole/trimethoprim (33.0%) and tetracycline (20.0%). Furthermore, 66.7% (10/15) were multidrug-resistant. From this study, we can conclude that foods marketed in Meknes city were contaminated by multidrug-resistant strains of L. monocytogenes harboring virulence genes, which may cause a serious risk to public health.

3.
Microorganisms ; 9(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466309

ABSTRACT

Pectobacterium brasiliense (Pbr) is considered as one of the most virulent species among the Pectobacteriaceae. This species has a broad host range within horticulture crops and is well distributed elsewhere. It has been found to be pathogenic not only in the field causing blackleg and soft rot of potato, but it is also transmitted via storage causing soft rot of other vegetables. Genomic analysis and other cost-effective molecular detection methods such as a quantitative polymerase chain reaction (qPCR) are essential to investigate the ecology and pathogenesis of the Pbr. The lack of fast, field deployable point-of-care testing (POCT) methods, specific control strategies and current limited genomic knowledge make management of this species difficult. Thus far, no comprehensive review exists about Pbr, however there is an intense need to research the biology, detection, pathogenicity and management of Pbr, not only because of its fast distribution across Europe and other countries but also due to its increased survival to various climatic conditions. This review outlines the information available in peer-reviewed literature regarding host range, detection methods, genomics, geographical distribution, nomenclature and taxonomical evolution along with some of the possible management and control strategies. In summary, the conclusions and a further directions highlight the management of this species.

4.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32763925

ABSTRACT

Pectobacterium punjabense is a newly described species causing blackleg disease in potato plants. Therefore, by the combination of long (Oxford Nanopore Technologies, MinION) and short (Illumina MiSeq) reads, we sequenced the complete genome of P. punjabense SS95T, which contains a circular chromosome of 4.793 Mb with a GC content of 50.7%.

5.
Microorganisms ; 8(6)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545839

ABSTRACT

Dickeya and Pectobacterium pathogens are causative agents of several diseases that affect many crops worldwide. This work investigated the species diversity of these pathogens in Morocco, where Dickeya pathogens have only been isolated from potato fields recently. To this end, samplings were conducted in three major potato growing areas over a three-year period (2015-2017). Pathogens were characterized by sequence determination of both the gapA gene marker and genomes using Illumina and Oxford Nanopore technologies. We isolated 119 pathogens belonging to P. versatile (19%), P. carotovorum (3%), P. polaris (5%), P. brasiliense (56%) and D. dianthicola (17%). Their taxonomic assignation was confirmed by draft genome analyses of 10 representative strains of the collected species. D. dianthicola were isolated from a unique area where a wide species diversity of pectinolytic pathogens was observed. In tuber rotting assays, D. dianthicola isolates were more aggressive than Pectobacterium isolates. The complete genome sequence of D. dianthicola LAR.16.03.LID was obtained and compared with other D. dianthicola genomes from public databases. Overall, this study highlighted the ecological context from which some Dickeya and Pectobacterium species emerged in Morocco, and reported the first complete genome of a D. dianthicola strain isolated in Morocco that will be suitable for further epidemiological studies.

6.
Plant Dis ; 104(5): 1492-1499, 2020 May.
Article in English | MEDLINE | ID: mdl-32150503

ABSTRACT

Potato blackleg is caused by a diverse species of pectinolytic bacteria. In Pakistan, approximately 90% of the pathogens involved belong to Pectobacterium atrosepticum. Survey (2014 to 2017), sampling, and isolation from different potato growing areas of Punjab, Pakistan depicted an overall disease incidence of approximately 15%. Thirty-six pectinolytic strains confirmed through biochemical and pathogenicity testing were characterized via gapA gene to identify them at the species level. To further validate the identification, one strain from each species SS26 (P. atrosepticum), SS28 (Pectobacterium polaris), SS70 (Dickeya dianthicola), SS90 (Pectobacterium parmentieri), SS95 (Pectobacterium punjabense), and SS96 (Pectobacterium versatile) were selected for draft genome sequencing and multilocus sequence analysis of 13 housekeeping genes (fusA, rpoD, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA, and rplB). Phylogenetic analysis revealed considerable genetic diversity in the genus Pectobacterium. In silico DNA-DNA hybridization and average nucleotide identity values of the strains selected for genome sequencing were determined with other reference Pectobacterium and Dickeya strains. Moreover, all six representative strains were also phenotypically characterized on the basis of metabolism of different carbon sources. Overall, on the basis of genotypic and phenotypic characteristics, these 36 isolates were grouped into six species: P. atrosepticum, P. versatile, P. parmentieri, P. polaris, P. punjabense, and D. dianthicola.


Subject(s)
Pectobacterium , Solanum tuberosum , DNA, Bacterial , Genes, Bacterial , Pakistan , Phylogeny , Plant Diseases , Sequence Analysis, DNA
7.
Int J Syst Evol Microbiol ; 69(8): 2440-2444, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31166160

ABSTRACT

Strains 2B12T, FVG1-MFV-O17 and FVG10-MFV-A16 were isolated from fresh water samples collected in Asia and Europe. The nucleotide sequences of the gapA barcodes revealed that all three strains belonged to the same cluster within the genus Dickeya. Using 13 housekeeping genes (fusA, rpoD, rpoS, glyA, purA, groEL, gapA, rplB, leuS, recA, gyrB, infB and secY), multilocus sequence analysis confirmed the existence of a new clade. When the genome sequences of these three isolates and other Dickeya species were compared, the in silico DNA-DNA hybridization and average nucleotide identity values were found to be no more than 45.50 and 91.22 %, respectively. The closest relative species was Dickeya fangzhongdai. Genome comparisons also highlighted genetic traits differentiating the new strains from D. fangzhongdai strains DSM 101947T (=CFBP 8607T) and B16. Phenotypical tests were performed to distinguish the three strains from D. fangzhongdai and other Dickeya species. The name Dickeya undicola sp. nov. is proposed with strain 2B12T (=CFBP 8650T=LMG 30903T) as the type strain.


Subject(s)
Enterobacteriaceae/classification , Fresh Water/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Enterobacteriaceae/isolation & purification , France , Genes, Bacterial , Genomics , Malaysia , Multilocus Sequence Typing , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Eur J Microbiol Immunol (Bp) ; 9(2): 56-61, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31223497

ABSTRACT

Salmonella is a major cause of morbidity and mortality in humans worldwide, and the infection with multidrug-resistant strains can cause severe diseases. This study was designed to evaluate the antimicrobial resistance, to detect the virulence genes, and to study the genetic diversity of isolated Salmonella strains using 16S rRNA sequences. For this, 34 Salmonella strains isolated from sausages were identified using biochemical and serological methods. Molecular tools were used to evaluate the presence of virulence genes (orgA, sitC, sipB, spiA, iroN, and sifA) using simplex and multiplex polymerase chain reaction (PCR) and to sequence 16S rRNA genes for phylogenetic analysis. The susceptibility to 24 selected antibiotics was also studied. The results of this study showed that all isolated Salmonella were positive for targeted virulence genes and were resistant to at least one antibiotic. However, the multidrug resistance was observed in 44% of isolated strains. The phylogenetic analysis of 16S rRNA sequences highlighted that Salmonella isolates were divided into 3 clusters and 3 sub-clusters, with a ≥98% similarity to Salmonella enterica species. From this study, we conclude that sausages are considered as a potential source of Salmonella, which could be a major risk to public health.

9.
Int J Syst Evol Microbiol ; 69(2): 470-475, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30601112

ABSTRACT

Pectobacterium carotovorum M022T has been isolated from a waterfall source in Selangor district (Malaysia). Using genomic and phenotypic tests, we re-examined the taxonomical position of this strain. Based on 14 concatenated housekeeping genes (fusA, rpoD, rpoS, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB), multi-locus sequence analysis revealed that strain M022T falls into a novel clade separated from the other Pectobacterium species. The in silico DNA-DNA hybridization and average nucleotide identity values were lower than the 70 and 95 % threshold values, respectively. In addition, by combining genomic and phenotypic tests, strain M022T may be distinguished from the other Pectobacterium isolates by its incapacity to grow on d(+)-xylose, l-rhamnose, cellobiose and lactose. Strain M022T (=CFBP 8629T=LMG 30744T) is proposed as the type strain of the Pectobacteriumfontis sp. nov.


Subject(s)
Pectobacterium/classification , Phylogeny , Water Microbiology , Bacterial Typing Techniques , DNA, Bacterial/genetics , Genes, Bacterial , Malaysia , Nucleic Acid Hybridization , Pectobacterium carotovorum/classification , Sequence Analysis, DNA
10.
Int J Syst Evol Microbiol ; 68(11): 3551-3556, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30239330

ABSTRACT

Pectobacterium isolates SS95T, SS54 and SS56 were collected from a potato field in the Chiniot district in the plains of the Punjab province, Pakistan. Sequencing of the gapA barcode revealed that these strains belong to a novel phylogenetic group separated from P.ectobacterium wasabiae and Pectobacterium parmentieri species. Furthermore, multilocus sequence analyses of 13 housekeeping genes (fusA, rpoD, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB) clearly distinguished the type strain, SS95T, from its closest relatives, i.e. P. parmentieri RNS 08-42-1AT and P. wasabiae CFBP3304T, as well as from all the other known Pectobacteriumspecies. In silico DNA-DNA hybridization (<44.1 %) and average nucleotide identity (<90.75 %) values of strain SS95T compared with other Pectobacterium type strains supported the delineation of a new species. Genomic and phenotypic comparisons permitted the identification of additional traits that distinguished the Pakistani isolates from all other known Pectobacterium type strains. The name Pectobacterium punjabense sp. nov. is proposed for this taxon with the type strain SS95T (=CFBP 8604T=LMG 30622T).


Subject(s)
Pectobacterium/classification , Phylogeny , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Bacterial Typing Techniques , DNA, Bacterial/genetics , Genes, Bacterial , Multilocus Sequence Typing , Nucleic Acid Hybridization , Pakistan , Pectobacterium/genetics , Pectobacterium/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Germs ; 8(2): 77-84, 2018 06.
Article in English | MEDLINE | ID: mdl-29951380

ABSTRACT

Background: Enterococcus spp. belongs to a group of pathogens which are responsible for serious infections. This study aims at highlighting the raw milk microbiological contamination and at providing data for prevalence and antimicrobial resistance of Enterococcus spp. isolated from raw cow's milk marketed (without any pasteurization) by street traders. Methods: During the period of May 2015 through April 2016, 150 cow's raw milk samples were collected from street traders in Meknes city. They were examined for the identification of Enterococcus spp. using biochemical tests and 16S rRNA gene sequencing. The antimicrobial susceptibility of the isolates was determined. Results: The results showed that 11.3% (17/150) of samples were positive for the presence of Enterococcus spp., of which 64.7% were identified as Enterococcus faecalis, 17.6% as Enterococcus faecium, 11.8% as Enterococcus durans and 5.9% as Enterococcus hirae. The antimicrobial susceptibility showed that all Enterococcus spp. were resistant to ampicillin. The species E. faecalis, E. faecium, E. durans and E. hirae were resistant to streptomycin, with percentages of 52.9% (9/17), 11.8% (2/17), 11.8% (2/17), and 5.9% (1/17) respectively. All isolated strains of E. faecalis and E. faecium were resistant to tetracycline. The multiple antibiotic resistance index was elevated in the majority of Enterococcus spp., reaching values higher than 0.5, indicating a risk for public health. Conclusion: This study shows that the raw milk consumed by the population is contaminated with strains of Enterococcus resistant to antibiotics used in breeding for prophylactic purposes. This requires raising the awareness of those involved in the production and marketing of milk, so as to take measures to apply good hygienic practices and rationalize the use of zootechnical antibiotics.

SELECTION OF CITATIONS
SEARCH DETAIL
...