Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650159

ABSTRACT

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Asthma , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Glutathione Peroxidase , Glutathione , Interleukin-4 , Lung , Malondialdehyde , Plant Extracts , Rats, Wistar , Syzygium , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Syzygium/chemistry , Male , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/chemistry , Lung/drug effects , Lung/pathology , Lung/metabolism , Glutathione Peroxidase/metabolism , Glutathione/metabolism , Interleukin-4/metabolism , Interleukin-4/blood , Malondialdehyde/metabolism , Ovalbumin , Catalase/metabolism , Rats , Erythrocytes/drug effects , Erythrocytes/metabolism , Water/chemistry
2.
Acta Biochim Pol ; 67(1): 53-64, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32187490

ABSTRACT

The present study was undertaken to evaluate the protective effects of Linum usitatissimum oil (LuO) against sub-chronic Roundup (RDP)-induced toxicity and oxidative stress in rats. Rats were divided into four groups: control group (no treatment), RDP group (Roundup at 269.9 mg/kg b.w.), LuO group (0.5 g/kg b.w. of LuO) and RDP+LuO group (RDP and LuO simultaneously). LuO decreased the ferric reducing antioxidant power (FRAP) (IC50=10.36 µg/ml) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50=22.85 mg/ml) in the tested tissues. The 30-day exposure of rats to RDP caused an increase in serum hepatic and renal markers: AST, ALT, ALP, LDH, γGT, bilirubin, urea, and creatinine. In addition, SOD, CAT and GST activities decreased by 43%, 61%, and 61%, respectively, while GPx activity, MDA and PCOs levels increased by 80%, 46%, 25%, respectively. LuO treatment alleviated hepatotoxicity in RDP-treated rats, showing improved levels of oxidative stress biomarkers and plasma biochemical parameters. The histological examination of the liver and kidney confirmed the changes in Roundup-treated rats and demonstrated the protective role of LuO.


Subject(s)
Glycine/analogs & derivatives , Kidney/drug effects , Linseed Oil/pharmacology , Liver/drug effects , Animals , Antioxidants/pharmacology , Biomarkers/blood , Flax/chemistry , Glycine/toxicity , Kidney/pathology , Linseed Oil/therapeutic use , Liver/pathology , Oxidative Stress/drug effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , Rats , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...