Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(55): 83580-83595, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35764735

ABSTRACT

Concrete paving block (CPB) has become a popular construction material for pavements subjected to passive loads (parking, toll plazas, gas stations, and street pavements). Due to the short time in the production of CPB, the concrete block industry has experienced tremendous growth over the past decade. In this scenario, the environmental distress cannot be ignored due to the increased extraction of raw materials (fossil fuels, limestone, river sand, and crushed aggregates) in the manufacturing of CPB. The sustainability issues demand the utilization of eco-friendly materials instead of natural ones to minimize the abiotic depletion caused by the construction industry. This study investigates the technical and environmental performance of CPB production incorporating an eco-friendly mineral admixture, i.e., ground granulated blast furnace slag (GGBS), as a cement replacement material. The optimum level of GGBS was decided based on the required engineering performance and minimal environmental impact. For the determination of the engineering performance of CPB, several parameters were considered such as compressive strength (CS), impact toughness (IT), and water absorption (WA). The environmental impact of Global Warming Potential (GWP) was assessed based on a cradle-to-gate LCA analysis. The results suggested that maximum mechanical performance and minimum GWP can be simultaneously achieved at 5-10% replacement of cement with GGBS, while to satisfy the minimum strength requirement, CPB can be prepared using 25% GGBS as a replacement for cement that accounts for 17% lower GWP than that of the conventional CPB manufacturing.


Subject(s)
Construction Industry , Construction Materials , Animals , Construction Materials/analysis , Compressive Strength , Minerals , Life Cycle Stages
2.
Sci Rep ; 11(1): 23184, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34848738

ABSTRACT

Self compacting concrete (SCC) is special type of concrete which is highly flowable and non-segregated and by its own mass, spreads into the formwork without any external vibrators, even in the presence of thick reinforcement. But SSC is also brittle nature like conventional concrete, which results in abrupt failure without giving any deformation (warning), which is undesirable for any structural member. Thus, self-compacting concrete (SCC) needs some of tensile reinforcement to enhance tensile strength and prevent the unsuitable abrupt failure. But fiber increased tensile strength of concrete more effectively than compressive strength. Hence, it is essential to add pozzolanic materials into fiber reinforced concrete to achieve high strength, durable and ductile concrete. This study is conducted to assess the performance of SCC with substitutions of marble waste (MW) and coconut fiber (CFs) into SCC. MW utilized as cementitious (pozzolanic) materials in percentage of 5.0 to 30% in increment of 5.0% by weight of binder and concrete is reinforced with CFs in proportion of 0.5 to 3.0% in increment of 0.5% by weight of binder. Rheological characteristics were measured through its filling and passing ability by using Slump flow, Slump T50, L-Box, and V-funnel tests while mechanical characteristics were measured through compressive strength, split tensile strength, flexure strength and bond strength (pull out) tests. Experimental investigation show that MW and CFs decrease the passing ability and filling ability of SCC. Additionally, Experimental investigation show that MW up to 20% and CFs addition 2.0% by weight of binder tend to increase the mechanical performance of SCC. Furthermore, statistical analysis (RSM) was used to optimize the combined dose of MW and CFs into SCC to obtain high strength self-compacting concrete.

SELECTION OF CITATIONS
SEARCH DETAIL
...