Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34944965

ABSTRACT

The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.

2.
Mol Syst Biol ; 16(7): e9524, 2020 07.
Article in English | MEDLINE | ID: mdl-32618424

ABSTRACT

T-cell receptor (TCR) ligation-mediated protein phosphorylation regulates the activation, cellular responses, and fates of T cells. Here, we used time-resolved high-resolution phosphoproteomics to identify, quantify, and characterize the phosphorylation dynamics of thousands of phosphorylation sites in primary T cells during the first 10 min after TCR stimulation. Bioinformatic analysis of the data revealed a coherent orchestration of biological processes underlying T-cell activation. In particular, functional modules associated with cytoskeletal remodeling, transcription, translation, and metabolic processes were mobilized within seconds after TCR engagement. Among proteins whose phosphorylation was regulated by TCR stimulation, we demonstrated, using a fast-track gene inactivation approach in primary lymphocytes, that the ITSN2 adaptor protein regulated T-cell effector functions. This resource, called LymphoAtlas, represents an integrated pipeline to further decipher the organization of the signaling network encoding T-cell activation. LymphoAtlas is accessible to the community at: https://bmm-lab.github.io/LymphoAtlas.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , CD4-Positive T-Lymphocytes/drug effects , Phosphoproteins/metabolism , Protein Kinases/metabolism , Proteomics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , Animals , Antibodies/pharmacology , CD4-Positive T-Lymphocytes/immunology , Chromatography, Liquid , Computational Biology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , Protein Biosynthesis/immunology , Signal Transduction/immunology , Tandem Mass Spectrometry , Time Factors
3.
Nat Immunol ; 20(11): 1530-1541, 2019 11.
Article in English | MEDLINE | ID: mdl-31591574

ABSTRACT

The activation of T cells by the T cell antigen receptor (TCR) results in the formation of signaling protein complexes (signalosomes), the composition of which has not been analyzed at a systems level. Here, we isolated primary CD4+ T cells from 15 gene-targeted mice, each expressing one tagged form of a canonical protein of the TCR-signaling pathway. Using affinity purification coupled with mass spectrometry, we analyzed the composition and dynamics of the signalosomes assembling around each of the tagged proteins over 600 s of TCR engagement. We showed that the TCR signal-transduction network comprises at least 277 unique proteins involved in 366 high-confidence interactions, and that TCR signals diversify extensively at the level of the plasma membrane. Integrating the cellular abundance of the interacting proteins and their interaction stoichiometry provided a quantitative and contextual view of each documented interaction, permitting anticipation of whether ablation of a single interacting protein can impinge on the whole TCR signal-transduction network.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Protein Interaction Maps/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Chromatography, Affinity/methods , Mass Spectrometry/methods , Mice , Mice, Transgenic , Primary Cell Culture , Protein Interaction Mapping/methods , Receptors, Antigen, T-Cell/immunology , Signal Transduction/genetics
4.
Cell Rep ; 27(11): 3315-3330.e7, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31189114

ABSTRACT

Deciphering how TCR signals are modulated by coinhibitory receptors is of fundamental and clinical interest. Using quantitative interactomics, we define the composition and dynamics of the PD-1 and BTLA coinhibitory signalosomes in primary effector T cells and at the T cell-antigen-presenting cell interface. We also solve the existing controversy regarding the role of the SHP-1 and SHP-2 protein-tyrosine phosphatases in mediating PD-1 coinhibition. PD-1 predominantly recruits SHP-2, but when absent, it recruits SHP-1 and remains functional. In contrast, BTLA predominantly recruits SHP-1 and to a lesser extent SHP-2. By separately analyzing the PD-1-SHP-1 and PD-1-SHP-2 complexes, we show that both dampen the TCR and CD28 signaling pathways equally. Therefore, our study illustrates how comparison of coinhibitory receptor signaling via quantitative interactomics in primary T cells unveils their extent of redundancy and provides a rationale for designing combinations of blocking antibodies in cancer immunotherapy on the basis of undisputed modes of action.


Subject(s)
Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Animals , Female , Humans , Immunotherapy , Jurkat Cells , Male , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/genetics , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Antigen, T-Cell/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...