Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 710: 136318, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32050368

ABSTRACT

Silver nanoparticles (AgNPs) are widely applied in several types of products since they act as a biocide. However, their high level of release into the environment can bring risks to ecosystems. Thus, the toxicity of AgNPs toward duckweed (Landoltia punctata) was investigated by monitoring the growth rate inhibition and the effect on the photosynthetic metabolism through morphological and ultrastructural analysis. The AgNPs were characterized by transmission electron microscopy and the effective diameter (dynamic light scattering) and zeta potential were determined. Plants were grown according to the environmental conditions recommended in ISO/DIS 20079 and then exposed to different concentrations of AgNPs. Inhibition of the growth rate was measured based on the EC50 and changes in the morphology, cellular structures and photosynthetic pigments were evaluated along with the silver accumulation. Although the results showed low growth inhibition when compared to other studies, significant damage to the ultrastructure, decreases in the photosynthetic pigments and starch grains, an increase in the phenolic compounds and physiological changes, such as a loss of color, were observed. Moreover, the accumulation of silver ions was noted and this could lead to bioamplification in consumer organisms, since duckweed belongs to the first level of the food chain.


Subject(s)
Araceae , Metal Nanoparticles/chemistry , Ecosystem , Photosynthesis , Silver
2.
Toxicol In Vitro ; 61: 104596, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31295524

ABSTRACT

The role of the crystalline structure on the toxicity of two phases of Al2O3 NPs, alpha (α-Al2O3 NPs) and eta (η-Al2O3 NPs), was investigated in this study. Different techniques were employed for the characterization of the Al2O3 NPs and multiple toxicological endpoints were used to assess the toxicity toward mouse neuroblastoma (N2A) and human bronchial epithelial (BEAS-2B) cells. Based on the results of the multiple toxicological endpoints, revealed differences in the toxic potential results for α-Al2O3 NPs and η-Al2O3 NPs, with the latter showing a more pronounced effect. These effects could be due to the high uptake of the η-Al2O3 NPs in the cytoplasmic vesicles, as evidenced by TEM and ICP-MS. Hence, the results demonstrate the potential toxicity of both α-Al2O3 NPs and η-Al2O3 NPs, although the N2A and BEAS-2B cells showed greater susceptibility toward η-Al2O3 NPs. Thus, our study demonstrates the important role of the crystalline structure in relation to the nanotoxicity of Al2O3 NPs.


Subject(s)
Aluminum Oxide/toxicity , Nanoparticles/toxicity , Aluminum Oxide/chemistry , Animals , Apoptosis/drug effects , Bronchi/cytology , Cell Line , Cell Survival/drug effects , Humans , Mice , Nanoparticles/chemistry , Neurons/drug effects , Oxidative Stress/drug effects , Structure-Activity Relationship
3.
J Microsc Ultrastruct ; 4(2): 85-94, 2016.
Article in English | MEDLINE | ID: mdl-30023214

ABSTRACT

Studies have clearly demonstrated the damaging effects of UV-B exposure on macroalgae, but few have reported the impact of UV-B on spore germination and development at juvenile stages. Therefore, this work aimed to analyze the effects of UV-B radiation on germlings of Nemalion helminthoides at the tetrasporophytic phase. To accomplish this, germlings of N. helminthoides were cultivated in the laboratory and separated into two groups. The control group was exposed onlyto photosynthetic radiation, while the treatment group was exposed to photosynthetic radiation + UV-B for 2 hours during a period of 12 days. Control germlings showed increasing cellular proliferation and accumulation of reserve substances, as well as intense ramification in the last observed stages between 9 days and 12 days of development. Moreover, the chloroplasts presented a typical globular pyrenoid, profusely traversed by thylakoid membranes. Treated germlings, by contrast, showed intracellular damage, such as cell wall thickness, loss of chloroplast organization, changes in mitochondrial cristae, and increasing atrophy of the Golgi bodies. Additionally, changes in developmental patterns were observed, including loss of polarity in the first divisions of carpospores and abnormal stem ramification. The quantification of autofluorescence data coincided with the ultrastructural changes observed in the chloroplasts of cells exposed to UV-B. It can be concluded that exposure to radiation changed the developmental pattern and morphology of the germlings of N. helminthoides.

4.
Photochem Photobiol ; 91(2): 359-70, 2015.
Article in English | MEDLINE | ID: mdl-25443444

ABSTRACT

The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 µm. Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 µmol photons m(-2)  s(-1) , PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) during a 12-h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.


Subject(s)
Cell Wall/radiation effects , Chloroplasts/radiation effects , Copper/toxicity , Photons , Photosynthesis/radiation effects , Rhodophyta/radiation effects , Cell Wall/drug effects , Cell Wall/ultrastructure , Chlorophyll/biosynthesis , Chlorophyll A , Chloroplasts/drug effects , Chloroplasts/physiology , Chloroplasts/ultrastructure , Microscopy, Electron, Transmission , Photoperiod , Photosynthesis/drug effects , Photosynthesis/physiology , Phycobiliproteins/biosynthesis , Pigments, Biological/biosynthesis , Rhodophyta/drug effects , Rhodophyta/physiology , Rhodophyta/ultrastructure , Ultraviolet Rays
5.
Protoplasma ; 252(1): 221-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25005714

ABSTRACT

Recently, the application of copper oxide nanoparticles (CuO-NPs) has increased considerably, primarily in scientific and industrial fields. However, studies to assess their health risks and environmental impacts are scarce. Therefore, the present study aims to evaluate the toxicological effects of CuO-NPs on the duckweed species Landoltia punctata, which was used as a test organism. To accomplish this, duckweed was grown under standard procedures according to ISO DIS 20079 and exposed to three different concentrations of CuO-NPs (0.1, 1.0, and 10.0 g L(-1)), with one control group (without CuO-NPs). The toxicological effects were measured based on growth rate inhibition, changes in the plant's morphology, effects on ultrastructure, and alterations in photosynthetic pigments. The morphological and ultrastructural effects were evaluated by electronic, scanning and light microscopic analysis, and CuO-NPs were characterized using transmission electron microscopy (TEM), zeta potential, and superficial area methods of analysis. This analysis was performed to evaluate nanoparticle size and form in solution and sample stability. The results showed that CuO-NPs affected morphology more significantly than growth rate. L. punctata also showed the ability to remove copper ions. However, for this plant to be representative within the trophic chain, the biomagnification of effects must be assessed.


Subject(s)
Araceae/chemistry , Copper/chemistry , Photosynthesis/physiology , Nanoparticles
6.
Microsc Microanal ; 20(5): 1411-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24983815

ABSTRACT

The in vitro effect of cadmium (Cd) on apical segments of Pterocladiella capillacea was examined. Over a period of 7 days, the segments were cultivated with the combination of different salinities (25, 35, and 45 practical salinity units) and Cd concentrations, ranging from 0.17 to 0.70 ppm. The effects of Cd on growth rates and content of photosynthetic pigments were analyzed. In addition, metabolic profiling was performed, and samples were processed for microscopy. Serious damage to physiological performance and ultrastructure was observed under different combinations of Cd concentrations and salinity values. Elementary infrared spectroscopy revealed toxic effects registered on growth rate, photosynthetic pigments, chloroplast, and mitochondria organization, as well as changes in lipids and carbohydrates. These alterations in physiology and ultrastructure were, however, coupled to activation of such defense mechanisms as cell wall thickness, reduction of photosynthetic harvesting complex, and flavonoid. In conclusion, P. capillacea is especially sensitive to Cd stress when intermediate concentrations of this pollutant are associated with low salinity values. Such conditions resulted in metabolic compromise, reduction of primary productivity, i.e., photosynthesis, and carbohydrate accumulation in the form of starch granules. Taken together, these findings improve our understanding of the potential impact of this metal in the natural environment.


Subject(s)
Cadmium/toxicity , Rhodophyta/drug effects , Rhodophyta/growth & development , Metabolome , Microscopy , Pigments, Biological/analysis , Rhodophyta/chemistry , Rhodophyta/cytology , Salinity , Spectrum Analysis
7.
Photochem Photobiol ; 90(3): 560-73, 2014.
Article in English | MEDLINE | ID: mdl-24329523

ABSTRACT

The photoacclimation responses of the brown macroalga Sargassum cymosum were studied to determine its cytochemical and ultrastructural organization, as well as photosynthetic pigments and performance. S. cymosum was cultivated in three salinities (30, 35 and 40 psu) under four irradiation treatments: PAR-only, PAR + UVA, PAR + UVB and PAR + UVA + UVB. Plants were exposed to PAR at 70 µmol photons m(-2) s(-1), PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) for 3 h per day during 7 days in vitro. Growth rate was not significantly affected by any type of radiation or salinity. The amount of pigments in S. cymosum was significantly influenced by the interaction of salinity and radiation treatments. Compared with PAR-only, UVR treatments modified the kinetics patterns of the photosynthesis/irradiance curve. After exposure to UVR, S. cymosum increased cell wall thickness and the presence of phenolic compounds. The number of mitochondria increased, whereas the number of chloroplasts showed few changes. Although S. cymosum showed insensitivity to changes in salinity, it can be concluded that samples treated under four irradiation regimes showed structural changes, which were more evident, but not severe, under PAR + UVB treatment.


Subject(s)
Adaptation, Physiological , Phaeophyceae/physiology , Photosynthesis , Salinity , Ultraviolet Rays , Electron Transport , Marine Biology , Microscopy, Electron, Transmission , Phaeophyceae/radiation effects , Phaeophyceae/ultrastructure , Pigments, Biological/metabolism
8.
J Phycol ; 50(3): 577-86, 2014 Jun.
Article in English | MEDLINE | ID: mdl-26988329

ABSTRACT

Gelidium floridanum W.R. Taylor tetraspores are units of dispersal and are responsible for substrate attachment. This study aimed to examine evidence of direct interaction between germ tube formation and Golgi activity during tetraspore germination of G. floridanum. After release, the tetraspores were incubated with brefeldin A (BFA) in concentrations of 4 and 8 µM over a 6 h period. The controls and treatments were analyzed with light, fluorescence (FM4-64 dye) and transmission electron microscopy. In the control samples, the Golgi bodies were responsible for germ tube formation. In contrast, BFA-treated samples were observed to inhibit spore adhesion and germ tube formation. These tetraspores also showed an increase in volume (≥30 µm width). BFA treatment also resulted in the disassembly of Golgi cisternae and the formation of vesiculated areas of the cytoplasm, blocking the secretion of protein and amorphous matrix polysaccharides. When stained with FM4-64, the control samples showed fluorescence in the apical region of the germ tube, but the treated samples showed an intense fluorescence throughout the cytoplasm. From these results, we can conclude that the germ tube is formed by the incorporation of vesicles derived from Golgi. Thus, vesicle secretion and Golgi organization are basic processes and essential in adhesion and tube formation. By blocking the secretion of protein and amorphous matrix polysaccharides, BFA treatment precluded tetraspore germination.

9.
Microsc Microanal ; 19(3): 513-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23551883

ABSTRACT

The effect of lead and copper on apical segments of Gracilaria domingensis was examined. Over a period of 7 days, the segments were cultivated with concentrations of 5 and 10 ppm under laboratory conditions. The samples were processed for light, confocal, and electron microscopy, as well as histochemistry, to evaluate growth rates, mitochondrial activity, protein levels, chlorophyll a, phycobiliproteins, and carotenoids. After 7 days of exposure to lead and copper, growth rates were slower than control, and biomass loss was observed on copper-treated plants. Ultrastructural damage was primarily observed in the internal organization of chloroplasts and cell wall thickness. X-ray microanalysis detected lead in the cell wall, while copper was detected in both the cytoplasm and cell wall. Moreover, lead and copper exposure led to photodamage of photosynthetic pigments and, consequently, changes in photosynthesis. However, protein content and glutathione reductase activity decreased only in the copper treatments. In both treatments, decreased mitochondrial NADH dehydrogenase activity was observed. Taken together, the present study demonstrates that (1) heavy metals such as lead and copper negatively affect various morphological, physiological, and biochemical processes in G. domingensis and (2) copper is more toxic than lead in G. domingensis.


Subject(s)
Copper/toxicity , Gracilaria/drug effects , Lead/toxicity , Biomass , Carotenoids/analysis , Cell Wall/chemistry , Cell Wall/drug effects , Cell Wall/ultrastructure , Chlorophyll/analysis , Chlorophyll A , Chloroplasts/drug effects , Chloroplasts/ultrastructure , Copper/analysis , Cytoplasm/chemistry , Electron Probe Microanalysis , Gracilaria/growth & development , Gracilaria/metabolism , Gracilaria/ultrastructure , Lead/analysis , Microscopy , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , NADH Dehydrogenase/metabolism , Photosynthesis/drug effects , Phycobiliproteins/analysis
10.
Microsc Microanal ; 18(6): 1467-79, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23153514

ABSTRACT

We undertook a study of Porphyra acanthophora var. brasiliensis to determine its responses under ambient conditions, photosynthetically active radiation (PAR), and PAR+UVBR (ultraviolet radiation-B) treatment, focusing on changes in ultrastructure, and cytochemistry. Accordingly, control ambient samples were collected in the field, and two different treatments were performed in the laboratory. Plants were exposed to PAR at 60 µmol photons m-2 s-1 and PAR + UVBR at 0.35 W m-2 for 3 h per day during 21 days of in vitro cultivation. Confocal laser scanning microscopy analysis of the vegetative cells showed single stellate chloroplast in ambient and PAR samples, but in PAR+UVBR-exposed plants, the chloroplast showed alterations in the number and form of arms. Under PAR+UVBR treatment, the thylakoids of the chloroplasts were disrupted, and an increase in the number of plastoglobuli was observed, in addition to mitochondria, which appeared with irregular, disrupted morphology compared to ambient and PAR samples. After UVBR exposure, the formation of carpospores was also observed. Plants under ambient conditions, as well as those treated with PAR and PAR+UVBR, all showed different concentrations of enzymatic response, including glutathione peroxidase and reductase activity. In summary, the present study demonstrates that P. acanthophora var. brasiliensis shows the activation of distinct mechanisms against natural radiation, PAR and PAR+UVBR.


Subject(s)
Chloroplasts/metabolism , Chloroplasts/radiation effects , Porphyra/metabolism , Porphyra/radiation effects , Ultraviolet Rays , Carotenoids/analysis , Cell Shape/radiation effects , Cell Wall/metabolism , Chlorophyll/analysis , Chlorophyll A , Cytoplasm/metabolism , Enzyme Activation , Enzyme Assays , Glutathione Peroxidase/metabolism , Microscopy, Confocal/methods , Mitochondria/metabolism , Mitochondria/radiation effects , NADH Dehydrogenase , Organelle Shape/radiation effects , Photons , Photosynthesis , Plant Cells/metabolism , Porphyra/enzymology , Porphyra/growth & development , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...