Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 24(1): e2300058, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37154384

ABSTRACT

Printable hydrogels have attracted significant attention as versatile, tunable, and spatiotemporally controlled biomaterials for tissue engineering (TE) applications. Several chitosan-based systems are reported presenting low or no solubility in aqueous solutions at physiological pH. Herein, a novel neutrally charged, biomimetic, injectable, and cytocompatible dual-crosslinked (DC) hydrogel system based on a double functionalized chitosan (CHT) with methacryloyl and tricine moieties (CHTMA-Tricine), completely processable at physiological pH, with promising three-dimensional (3D) printing potential is presented. Tricine, an amino acid typically used in biomedicine, is capable of establishing supramolecular interactions (H-bonds) and is never explored as a hydrogel component for TE. CHTMA-Tricine hydrogels demonstrate significantly greater toughness (ranging from 656.5 ± 82.2 to 1067.5 ± 121.5 kJ m-3 ) compared to CHTMA hydrogels (ranging from 382.4 ± 44.1 to 680.8 ± 104.5 kJ m-3 ), highlighting the contribution of the supramolecular interactions for the overall reinforced 3D structure provided by tricine moieties. Cytocompatibility studies reveal that MC3T3-E1 pre-osteoblasts cells remain viable for 6 days when encapsulated in CHTMA-Tricine constructs, with semi-quantitative analysis showing ≈80% cell viability. This system's interesting viscoelastic properties allow the fabrication of multiple structures, which couple with a straightforward approach, will open doors for the design of advanced chitosan-based biomaterials through 3D bioprinting for TE.


Subject(s)
Bioprinting , Chitosan , Glycine/analogs & derivatives , Tissue Engineering/methods , Hydrogels/pharmacology , Hydrogels/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Printing, Three-Dimensional , Bioprinting/methods , Tissue Scaffolds/chemistry
2.
Molecules ; 25(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322752

ABSTRACT

The pyrazole nucleus and its reduced forms, pyrazolines and pyrazolidine, are privileged scaffolds in medicinal chemistry due to their remarkable biological activities. A huge number of pyrazole derivatives have been studied and reported over time. This review article gives an overview of pyrazole derivatives that contain a styryl (2-arylvinyl) group linked in different positions of the pyrazole backbone. Although there are studies on the synthesis of styrylpyrazoles dating back to the 1970s and even earlier, this type of compound has rarely been studied. This timely review intends to summarize the properties, biological activity, methods of synthesis and transformation of styrylpyrazoles; thus, highlighting the interest and huge potential for application of this kind of compound.


Subject(s)
Pyrazoles/chemistry , Animals , Humans , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...