Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 97(12): 4710-4720, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31634906

ABSTRACT

The objective of this study was to determine the influence of a dual respiratory and enteric pathogen challenge on growth performance, carcass composition, and pork quality of high and low feed efficient pigs. Pigs divergently selected for low and high residual feed intake (RFI, ~68 kg) from the 11th generation of Iowa State University RFI project were used to represent high and low feed efficiency. To elicit a dual pathogen challenge, half of the pigs (n = 12/line) were inoculated with Mycoplasma hyopneumoniae (Mh) and Lawsonia intracellularis (MhLI) on days post-inoculation (dpi) 0. Pigs in a separate room of the barn were not inoculated and used as controls (n = 12/RFI line). Pigs were weighed and feed intake was recorded to calculate ADG, ADFI, and G:F for the acclimation period (period 1: dpi -21 to 0), during peak infection (period 2: dpi 0 to 42), and during the remaining growth period to reach market weight (period 3: dpi 42 to harvest). At ~125 kg, pigs were harvested using standard commercial procedures. Carcasses were evaluated for composition (weight, fat free lean, loin eye area, 10th rib fat depth) and meat quality (pH decline, temperature decline, Hunter L, a, and b, subjective color and marbling, star probe, drip loss, cook loss, proximate composition, and desmin degradation). Challenged pigs had lesser ADFI than controls during period 2 (P < 0.05), but had greater ADG and G:F during period 3 (P < 0.05). Selection for feed efficiency did not result in a differential response to MhLI (P > 0.05). Loin chops from the less feed efficient, high RFI pigs, had greater drip loss, greater cook loss, lesser moisture content, greater Hunter L values, and greater Hunter b values (P < 0.05) than loin chops from low RFI pigs. Infection status did not significantly affect carcass composition or pork quality traits (P > 0.05). These results indicate that a MhLI challenge early in growth did not significantly affect ultimate carcass composition or meat quality traits. Selection for greater feed efficiency in pigs did not affect their response to pathogenic challenge.


Subject(s)
Desulfovibrionaceae Infections/veterinary , Lawsonia Bacteria , Mycoplasma hyopneumoniae , Pneumonia of Swine, Mycoplasmal/microbiology , Pork Meat/standards , Swine Diseases/microbiology , Animals , Body Composition/drug effects , Body Weight , Coinfection/veterinary , Desulfovibrionaceae Infections/pathology , Female , Male , Pneumonia of Swine, Mycoplasmal/pathology , Swine
2.
J Anim Sci ; 96(8): 3196-3207, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-29860328

ABSTRACT

Respiratory and enteric pathogens such as Mycoplasma hyopneumoniae (Mh) and Lawsonia intracellularis (LI) reduce lean accretion and feed efficiency (FE) in growing pigs. However, the metabolic mechanism by which this occurs is still unknown. Therefore, the primary aim of this study was to examine the metabolic adaptation of pigs presented with a dual Mh and LI challenge (MhLI). A secondary objective was to examine if selection for high FE, modeled by selection for low residual feed intake (RFI), alters molecular response to disease. Using a 2 × 2 factorial design, 6 littermate pairs from a high RFI (HRFI) and 6 littermate pairs from a low RFI (LRFI) line (barrows, 66 ± 2 kg BW) were selected, with 1 pig from each pair assigned to individual pens in either the challenge or the nonchallenge (control) rooms (n = 6 barrows per line/challenge). On days post inoculation (dpi) 0, MhLI pigs were inoculated intragastrically with LI and intratracheally with Mh. Pig and feeder weights were recorded at dpi 0, 7, 14, and 21. On dpi 21, pigs were euthanized and tissues and blood were collected. Markers of oxidative stress, skeletal muscle metabolism and proteolysis, and liver gluconeogenesis were evaluated to determine the effects of MhLI, RFI line, and their interaction. The interaction of line and challenge was not significant (P > 0.05) for any measure. Overall, MhLI pigs had lower ADG (38%, P < 0.001), ADFI (25%, P < 0.001), and G:F (19%, P = 0.012) compared with controls. As expected, LRFI pigs had lower ADFI (P = 0.028) for the same ADG, giving them greater G:F (P = 0.021) than HRFI pigs. Challenged pigs had greater reactive oxygen species (ROS) production in the LM and liver (P < 0.10) but did not have greater skeletal muscle proteolysis. Liver gluconeogenesis was also not upregulated (P > 0.05) due to MhLI. These results provide further evidence that selection for LRFI does not negatively affect response to disease. In addition, these results suggest that postabsorptive metabolic functions are altered due to MhLI challenge. The MhLI challenge induced mitochondrial dysfunction, evident by greater ROS production, and caused pigs to favor glycolytic energy generation. However, skeletal muscle proteolysis and liver gluconeogenesis were not upregulated during MhLI challenge. These data suggest that during mild disease stress, pigs can meet energy demands without reliance on nutrient mobilization and gluconeogenesis.


Subject(s)
Animal Feed/analysis , Lawsonia Bacteria/physiology , Mycoplasma hyopneumoniae/physiology , Swine/metabolism , Animals , Eating , Energy Metabolism , Gluconeogenesis , Host-Pathogen Interactions , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Oxidative Stress , Proteolysis , Random Allocation , Swine/growth & development , Swine/microbiology
3.
J Anim Sci ; 96(2): 462-472, 2018 Mar 06.
Article in English | MEDLINE | ID: mdl-29385478

ABSTRACT

Feed efficiency (FE) is a valuable trait, yet how genetic selection for enhanced FE affects other processes such as response to disease is unknown. Disease from endemic respiratory and enteric pathogens such as Mycoplasma hyopneumoniae (Mh) and Lawsonia intracellularis (LI) are common in swine production. Therefore, the aim of this study was to examine if pigs selected for high vs. low FE based on residual feed intake (RFI) respond differently to a dual respiratory and enteric challenge. Pigs selected for low RFI (LRFI, high FE) are considered more FE compared to their high RFI (HRFI, low FE) selected counterparts. Using a 2 × 2 factorial design, 25 littermate pairs from the HRFI and 25 littermate pairs from the LRFI line (barrows, 50 ± 7 kg BW) were selected, with one pig from each pair assigned to individual pens in either the challenge or the nonchallenge (control) rooms (n = 25 barrows/line/challenge). On days post inoculation (dpi) 0, the challenged pigs were inoculated with LI and Mh (MhLI). Feed intake, BW, fecal swabs, and serum samples were collected and recorded weekly for 42 d. On dpi -2 and 47, 14 littermate pairs (n = 7 barrows/line/challenge) were utilized for initial and final body composition scans using dual-energy X-ray absorptiometry to calculate longitudinal whole body tissue accretion rates for lean, protein, fat, and bone mineral content. Serum antibody levels and fecal shedding of LI were used to confirm infection. Control pigs remained negative by all measures during the 6-wk trial and MhLI inoculated pigs were confirmed positive via serological antibody responses by dpi 14 for LI and Mh. There were no interactions between RFI line and challenge status for any overall performance parameter (P > 0.05). The 6-wk MhLI challenge resulted in a 17% reduction in ADG, a 12% reduction in ADFI, and a 7% reduction in G:F vs. Controls (P < 0.05). In addition, compared to the Control pigs, MhLI challenge reduced lean, protein, and lipid accretion rates by 16% (P < 0.05). Genetic selection for high FE resulted in decreased ADFI and increased G:F (P < 0.01), but did not impact ADG or tissue accretion vs. low FE pigs. Collectively, these results demonstrate that a dual enteric and respiratory pathogen challenge reduced ADG, ADFI, G:F, and tissue accretion in growing pigs. Further, there was no evidence that selection for enhanced FE based on RFI index affects response to disease.


Subject(s)
Desulfovibrionaceae Infections/veterinary , Lawsonia Bacteria , Mycoplasma hyopneumoniae , Pneumonia of Swine, Mycoplasmal/pathology , Swine Diseases/microbiology , Animals , Body Composition/physiology , Desulfovibrionaceae Infections/pathology , Energy Metabolism/genetics , Female , Male , Selection, Genetic , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...