Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(2): 1310-1314, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38170997

ABSTRACT

We report an efficient route for the synthesis of highly substituted 1-aminonaphthalenes from benzaldehydes. The method employs a stereoselective Still-Gennari modification of the Horner-Wadsworth-Emmons olefination to afford (E)-benzylidenesuccinonitrile precursors, which undergo Bronsted acid mediated benzannulation to afford 1-aminonaphthalene derivatives in 35-95% yield. The abundance of commercially available benzaldehydes, coupled with the simplicity of our method, enables many previously unexplored naphthalene substitution patterns to become readily accessible.

2.
J Am Chem Soc ; 144(22): 9610-9617, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35613436

ABSTRACT

Aberrant tumor necrosis factor-α (TNFα) signaling is associated with many inflammatory diseases. The homotrimeric quaternary structure of TNFα is essential for receptor recognition and signal transduction. Previously, we described an engineered α/ß-peptide inhibitor that potently suppresses TNFα activity and resists proteolysis. Here, we present structural evidence that both the α/ß-peptide inhibitor and an all-α analogue bind to a monomeric form of TNFα. Calorimetry data support a 1:1 inhibitor/TNFα stoichiometry in solution. In contrast, previous cocrystal structures involving peptide or small-molecule inhibitors have shown the antagonists engaging a TNFα dimer. The structural data reveal why our inhibitors favor monomeric TNFα. Previous efforts to block TNFα-induced cell death with peptide inhibitors revealed that surfactant additives to the assay conditions cause a more rapid manifestation of inhibitory activity than is observed in the absence of additives. We attributed this effect to a loose surfactant TNFα association that lowers the barrier to trimer dissociation. Here, we used the new structural data to design peptide inhibitors bearing a surfactant-inspired appendage intended to facilitate TNFα trimer dissociation. The appendage modified the time course of protection from cell death.


Subject(s)
Protease Inhibitors , Tumor Necrosis Factor-alpha , Peptide Hydrolases/metabolism , Peptides/pharmacology , Protease Inhibitors/pharmacology , Signal Transduction , Surface-Active Agents/pharmacology , Tumor Necrosis Factor-alpha/metabolism
3.
mBio ; 12(3): e0079921, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34061592

ABSTRACT

Measles virus (MeV) bearing a single amino acid change in the fusion protein (F)-L454W-was isolated from two patients who died of MeV central nervous system (CNS) infection. This mutation in F confers an advantage over wild-type virus in the CNS, contributing to disease in these patients. Using murine ex vivo organotypic brain cultures and human induced pluripotent stem cell-derived brain organoids, we show that CNS adaptive mutations in F enhance the spread of virus ex vivo. The spread of virus in human brain organoids is blocked by an inhibitory peptide that targets F, confirming that dissemination in the brain tissue is attributable to F. A single mutation in MeV F thus alters the fusion complex to render MeV more neuropathogenic. IMPORTANCE Measles virus (MeV) infection can cause serious complications in immunocompromised individuals, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE), another severe central nervous system (CNS) complication, develop even in the face of a systemic immune response. Both MIBE and SSPE are relatively rare but lethal. It is unclear how MeV causes CNS infection. We introduced specific mutations that are found in MIBE or SSPE cases into the MeV fusion protein to test the hypothesis that dysregulation of the viral fusion complex-comprising F and the receptor binding protein, H-allows virus to spread in the CNS. Using metagenomic, structural, and biochemical approaches, we demonstrate that altered fusion properties of the MeV H-F fusion complex permit MeV to spread in brain tissue.


Subject(s)
Brain/virology , Measles virus/genetics , Viral Fusion Proteins/genetics , Amino Acid Substitution , Animals , Brain/cytology , Brain/pathology , Central Nervous System Diseases/virology , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Male , Measles/virology , Measles virus/pathogenicity , Metagenomics , Mice , Neurons/virology , Organoids/cytology , Organoids/virology , Vero Cells , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/classification , Viral Fusion Proteins/metabolism
4.
J Am Chem Soc ; 143(15): 5958-5966, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33825470

ABSTRACT

The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with ß-amino acid residues to generate α/ß-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/ß-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.


Subject(s)
Lipopeptides/pharmacology , Parainfluenza Virus 3, Human/drug effects , Respiratory Tract Infections/pathology , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cell Line , Cholesterol/chemistry , Drug Design , Humans , Lipopeptides/chemistry , Lipopeptides/metabolism , Parainfluenza Virus 3, Human/isolation & purification , Protein Multimerization , Rats , Respiratory Tract Infections/virology , Tissue Distribution , Transition Temperature , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virus Internalization/drug effects
5.
mBio ; 11(5)2020 10 20.
Article in English | MEDLINE | ID: mdl-33082259

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the etiological agent of the 2019 coronavirus disease (COVID-19), has erupted into a global pandemic that has led to tens of millions of infections and hundreds of thousands of deaths worldwide. The development of therapeutics to treat infection or as prophylactics to halt viral transmission and spread is urgently needed. SARS-CoV-2 relies on structural rearrangements within a spike (S) glycoprotein to mediate fusion of the viral and host cell membranes. Here, we describe the development of a lipopeptide that is derived from the C-terminal heptad repeat (HRC) domain of SARS-CoV-2 S that potently inhibits infection by SARS-CoV-2. The lipopeptide inhibits cell-cell fusion mediated by SARS-CoV-2 S and blocks infection by live SARS-CoV-2 in Vero E6 cell monolayers more effectively than previously described lipopeptides. The SARS-CoV-2 lipopeptide exhibits broad-spectrum activity by inhibiting cell-cell fusion mediated by SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) and blocking infection by live MERS-CoV in cell monolayers. We also show that the SARS-CoV-2 HRC-derived lipopeptide potently blocks the spread of SARS-CoV-2 in human airway epithelial (HAE) cultures, an ex vivo model designed to mimic respiratory viral propagation in humans. While viral spread of SARS-CoV-2 infection was widespread in untreated airways, those treated with SARS-CoV-2 HRC lipopeptide showed no detectable evidence of viral spread. These data provide a framework for the development of peptide therapeutics for the treatment of or prophylaxis against SARS-CoV-2 as well as other coronaviruses.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, continues to spread globally, placing strain on health care systems and resulting in rapidly increasing numbers of cases and mortalities. Despite the growing need for medical intervention, no FDA-approved vaccines are yet available, and treatment has been limited to supportive therapy for the alleviation of symptoms. Entry inhibitors could fill the important role of preventing initial infection and preventing spread. Here, we describe the design, synthesis, and evaluation of a lipopeptide that is derived from the HRC domain of the SARS-CoV-2 S glycoprotein that potently inhibits fusion mediated by SARS-CoV-2 S glycoprotein and blocks infection by live SARS-CoV-2 in both cell monolayers (in vitro) and human airway tissues (ex vivo). Our results highlight the SARS-CoV-2 HRC-derived lipopeptide as a promising therapeutic candidate for SARS-CoV-2 infections.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Lipopeptides/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , HEK293 Cells , Humans , Lipopeptides/chemistry , Membrane Fusion/drug effects , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Protein Domains , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2 , Vero Cells
6.
ACS Infect Dis ; 6(8): 2017-2022, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32692914

ABSTRACT

Partial replacement of α-amino acid residues with ß-amino acid residues has been established as a strategy for preserving target-engagement by helix-forming polypeptides while altering other properties. The impact of ß-residue incorporation within polypeptides that adopt less regular conformations, however, has received less attention. The C-terminal heptad repeat (HRC) domains of fusion glycoproteins from pathogenic paramyxoviruses contain a segment that must adopt an extended conformation in order to coassemble with the N-terminal heptad repeat (HRN) domain in the postfusion state and drive a merger of the viral envelope with a target cell membrane. Here, we examine the impact of single α-to-ß substitutions within this extended N-terminal segment of an engineered HRC peptide designated VIQKI. Stabilities of hexameric coassemblies formed with the native human parainfluenza virus 3 (HPIV3) HRN have been evaluated, the structures of five coassemblies have been determined, and antiviral efficacies have been measured. Many sites within the extended segment show functional tolerance of α-to-ß substitution. These results offer a basis for future development of paramyxovirus infection inhibitors with novel biological activity profiles, possibly including resistance to proteolysis.


Subject(s)
Viral Fusion Proteins , Virus Internalization , Antiviral Agents/pharmacology , Humans , Parainfluenza Virus 3, Human , Peptides , Viral Fusion Proteins/genetics
7.
J Am Chem Soc ; 142(5): 2140-2144, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31951396

ABSTRACT

Human parainfluenza virus 3 (HPIV3) and respiratory syncytial virus (RSV) are leading causes of lower respiratory tract infections. There are currently no vaccines or antiviral therapeutics to treat HPIV3 or RSV infections. We recently reported a peptide (VIQKI), derived from the C-terminal heptad repeat (HRC) domain of the HPIV3 fusion (F) glycoprotein that inhibits infection by both HPIV3 and RSV. The dual inhibitory activity of VIQKI is due to its unique ability to bind to the N-terminal heptad repeat (HRN) domains of both HPIV3 and RSV F, thereby preventing the native HRN-HRC interactions required for viral entry. Here we describe the structure-guided design of dual inhibitors of HPIV3 and RSV fusion with improved efficacy. We show that VIQKI derivatives possessing one (I456F) or two (I454F/I456F) phenylalanine substitutions near the N-terminus exhibit more stable assemblies with the RSV-HRN domain and enhanced antiviral efficacy against both HPIV3 and RSV infection. Cocrystal structures of the new Phe-substituted inhibitors coassembled with HPIV3 or RSV-HRN domains reveal that the I456F substitution makes intimate hydrophobic contact with the core trimers of both HPIV3 and RSV F.


Subject(s)
Antiviral Agents/pharmacology , Oligopeptides/pharmacology , Parainfluenza Virus 3, Human/drug effects , Respiratory Syncytial Virus, Human/drug effects , Virus Internalization/drug effects , Amino Acid Sequence , Antiviral Agents/chemistry , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Oligopeptides/chemistry , Parainfluenza Virus 3, Human/physiology , Protein Conformation , Respiratory Syncytial Virus, Human/physiology
8.
J Am Chem Soc ; 141(32): 12648-12656, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31268705

ABSTRACT

Human parainfluenza virus 3 (HPIV3) and respiratory syncytial virus (RSV) cause lower respiratory infection in infants and young children. There are no vaccines for these pathogens, and existing treatments have limited or questionable efficacy. Infection by HPIV3 or RSV requires fusion of the viral and cell membranes, a process mediated by a trimeric fusion glycoprotein (F) displayed on the viral envelope. Once triggered, the pre-fusion form of F undergoes a series of conformational changes that first extend the molecule to allow for insertion of the hydrophobic fusion peptide into the target cell membrane and then refold the trimeric assembly into an energetically stable post-fusion state, a process that drives the merger of the viral and host cell membranes. Peptides derived from defined regions of HPIV3 F inhibit infection by HPIV3 by interfering with the structural transitions of the trimeric F assembly. Here we describe lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F that potently inhibit infection by both HPIV3 and RSV. The lead peptide inhibits RSV infection as effectively as does a peptide corresponding to the RSV HRC domain itself. We show that the inhibitors bind to the N-terminal heptad repeat (HRN) domains of both HPIV3 and RSV F with high affinity. Co-crystal structures of inhibitors bound to the HRN domains of HPIV3 or RSV F reveal remarkably different modes of binding in the N-terminal segment of the inhibitor.


Subject(s)
Lipopeptides/pharmacology , Parainfluenza Virus 3, Human/drug effects , Peptide Fragments/pharmacology , Respiratory Syncytial Viruses/drug effects , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Proteins/pharmacology , Amino Acid Sequence , Crystallography, X-Ray , Humans , Lipopeptides/metabolism , Microbial Sensitivity Tests , Parainfluenza Virus 3, Human/chemistry , Peptide Fragments/metabolism , Protein Binding , Respiratory Mucosa/virology , Respiratory Syncytial Viruses/chemistry , Viral Fusion Protein Inhibitors/metabolism , Viral Fusion Proteins/metabolism , Virus Internalization/drug effects
9.
Chemistry ; 22(43): 15212-15215, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27549912

ABSTRACT

Fluorescent-sensor design requires consideration of how photochemical dynamics control properties of a sensing state. Transient absorption (TA) spectroscopy reveals an ultrafast net [1,3]-hydrogen shift following excitation of a protonated methoxy benzoindolizine (bzi) sensor in solution. These photochemical dynamics explain a quenched pH-responsive fluorescence shift and dramatically reduced fluorescence quantum yield relative to other (e. g. methyl) bzi compounds that do not tautomerize. Calculations predict the energetic and structural feasibility for rearrangement in protonated bzi compounds, such that interaction between the pi-network and strongly electron-donating methoxyl must lower the barrier for suprafacial H or H+ shift across an allylic moiety. As bzi compounds broadly exhibit pH-responsive emission shifts, chemical interactions that modulate this electronic interaction and suppress tautomerization could be used to facilitate binding- or surface-specific acid-responsive sensing.

10.
RSC Adv ; 6(66): 61249-61253, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-28580137

ABSTRACT

6-Amino-8-cyanobenzo[1, 2-b]indolizines, a new class of photoluminescent materials, exhibit reversible pH-dependent optical properties characterized by an uncommon and dramatic blue shift in fluorescence emission when protonated. Acid titration and NMR spectroscopy experiments reveal that, rather than the anticipated N-protonation, C-protonation and loss of aromaticity is responsible for the observed photophysical changes. Efficient synthesis from indole-2-carboxaldehydes makes variously substituted versions of this nucleus readily available to tune optical and pH effects.

11.
Org Lett ; 17(8): 1822-5, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25815402

ABSTRACT

An efficient route to substituted N-fused aromatic heterocycles, including indolizines, imidazo[1,2-a]pyridines, and imidazo[1,5-a]pyridines from azole aldehydes, is reported. Wittig olefination of the aldehydes with fumaronitrile and triethylphosphine affords predominantly E-alkenes that undergo rapid cyclization upon treatment with a mild base. Substituent control of the 1-, 2-, and 3-positions of the resulting heteroaromatic bicycles is shown. Alternatively, the isolable E-alkene undergoes selective alkylation with electrophiles, followed by in situ annulation to indolizines additionally substituted at the 6-position.


Subject(s)
Indolizines/chemical synthesis , Pyridines/chemical synthesis , Indolizines/chemistry , Molecular Structure , Pyridines/chemistry , Stereoisomerism
12.
Org Lett ; 16(24): 6334-7, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25479249

ABSTRACT

Among privileged structures, indoles occupy a central place in medicinal chemistry and alkaloid research. Here we report a flexible and efficient conversion of pyrrole-3-carboxaldehydes to substituted 7-amino-5-cyanoindoles. Phosphine addition to fumaronitrile proceeds with prototropic rearrangement of the initially formed zwitterion to the thermodynamically favored phosphonium ylide, which is poised for in situ Wittig olefination. The predominantly E-alkene product positions the allylic nitrile for facile intramolecular Hoeben-Hoesch reaction in the presence of BF3·OEt2. Syntheses of 2,5- and 3,5-disubstituted 7-aminoindoles are illustrated. Additionally, dianion alkylation of the allylic nitrile is demonstrated to furnish, after cyclization, 5,6-disubstituted 7-aminoindoles to further exemplify this scalable and high-yielding method.


Subject(s)
Indoles/chemical synthesis , Nitriles/chemistry , Pyrroles/chemistry , Alkylation , Catalysis , Cyclization , Indoles/chemistry , Molecular Structure , Stereoisomerism
13.
Medchemcomm ; 5(6): 826-830, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-25068033

ABSTRACT

Despite a rising demand for anti-obesity therapeutics, few effective pharmacological options are clinically available that target the synthesis and accumulation of body fat. Moderate inhibition of mammalian glycerol-3-phosphate acyltransferase (GPAT) with 2-(alkanesulfonamido)benzoic acids has recently been described in vitro, accompanied by promising weight loss in vivo. In silico docking studies with 2-(octanesulfonamido)benzoic acid modeled into the active site of squash GPAT revealed an unoccupied volume lined with hydrophobic residues proximal to C-4 and C-5 of the benzoic acid ring. In an effort to produce more potent GPAT inhibitors, a series of 4- and 5-substituted analogs were designed, synthesized, and evaluated for inhibitory activity. In general, compounds containing hydrophobic substituents at the 4- and 5-positions, such as biphenyl and alkylphenyl hydrocarbons, exhibited an improved inhibitory activity against GPAT in vitro. The most active compound, 4-([1,1'-biphenyl]-4-carbonyl)-2-(octanesulfonamido)benzoic acid, demonstrated an IC50 of 8.5 µM and represents the best GPAT inhibitor discovered to date. Conversely, further substitution with hydroxyl or fluoro groups, led to a 3-fold decrease in activity. These results are consistent with the presence of a hydrophobic pocket and may support the binding model as a potential tool for developing more potent inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL
...