Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neurochir Suppl ; 131: 143-147, 2021.
Article in English | MEDLINE | ID: mdl-33839835

ABSTRACT

INTRODUCTION: Monitoring of cerebral autoregulation (CA) in patients with a traumatic brain injury (TBI) can provide an individual 'optimal' cerebral perfusion pressure (CPP) target (CPPopt) at which CA is best preserved. This potentially offers an individualized precision medicine approach. Retrospective data suggest that deviation of CPP from CPPopt is associated with poor outcomes. We are prospectively assessing the feasibility and safety of this approach in the COGiTATE [CPPopt Guided Therapy: Assessment of Target Effectiveness] study. Its primary objective is to demonstrate the feasibility of individualizing CPP at CPPopt in TBI patients. The secondary objectives are to investigate the safety and physiological effects of this strategy. METHODS: The COGiTATE study has included patients in four European hospitals in Cambridge, Leuven, Nijmegen, and Maastricht (coordinating centre). Patients with severe TBI requiring intracranial pressure (ICP)-directed therapy are allocated into one of two groups. In the intervention group, CPPopt is calculated using a published (modified) algorithm. In the control group, the CPP target recommended in the Brain Trauma Foundation guidelines (CPP 60-70 mmHg) is used. RESULTS: Patient recruitment started in February 2018 and will continue until 60 patients have been studied. Fifty-one patients (85% of the intended total) have been recruited in October 2019. The first results are expected early 2021. CONCLUSION: This prospective evaluation of the feasibility, safety and physiological implications of autoregulation-guided CPP management is providing evidence that will be useful in the design of a future phase III study in severe TBI patients.


Subject(s)
Brain Injuries, Traumatic , Intracranial Pressure , Brain Injuries, Traumatic/therapy , Cerebrovascular Circulation , Feasibility Studies , Humans , Retrospective Studies
2.
Neurocrit Care ; 16(2): 258-66, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21964774

ABSTRACT

INTRODUCTION: Pressure-reactivity index (PRx) is a useful tool in brain monitoring of trauma patients, but the question remains about its critical values. Using our TBI database, we identified the thresholds for PRx and other monitored parameters that maximize the statistical difference between death/survival and favorable/unfavorable outcomes. We also investigated how these thresholds depend on clinical factors such as age, gender and initial GCS. METHODS: A total of 459 patients from our database were eligible. Tables of 2 × 2 format were created grouping patients according to survival/death or favorable/unfavorable outcomes and varying thresholds for PRx, ICP and CPP. Pearson's chi square was calculated, and the thresholds returning the highest score were assumed to have the best discriminative value. The same procedure was repeated after division according to clinical factors. RESULTS: In all patients, we found that PRx had different thresholds for survival (0.25) and for favorable outcome (0.05). Thresholds of 70 mmHg for CPP and 22 mmHg for ICP were identified for both survival and favorable outcomes. The ICP threshold for favorable outcome was lower (18 mmHg) in females and patients older than 55 years. In logistic regression models, independent variables associating with mortality and unfavorable outcome were age, GCS, ICP and PRx. CONCLUSION: The prognostic role of PRx is confirmed but with a lower threshold of 0.05 for favorable outcome than for survival (0.25). Results for ICP are in line with current guidelines. However, the lower value in elderly and in females suggests increased vulnerability to intracranial hypertension in these groups.


Subject(s)
Brain Injuries/diagnosis , Brain Injuries/physiopathology , Brain/physiopathology , Intracranial Hypertension/diagnosis , Intracranial Hypertension/physiopathology , Intracranial Pressure/physiology , Adolescent , Adult , Aged , Brain/blood supply , Brain Injuries/mortality , Cerebrovascular Circulation/physiology , Female , Humans , Intracranial Hypertension/mortality , Logistic Models , Male , Middle Aged , Monitoring, Physiologic , Prognosis
3.
Neurology ; 75(2): 168-76, 2010 Jul 13.
Article in English | MEDLINE | ID: mdl-20625170

ABSTRACT

BACKGROUND: A large proportion of survivors of traumatic brain injury (TBI) have persistent cognitive impairments, the profile of which does not always correspond to the size and location of injuries. One possible explanation could be that TBI-induced damage extends beyond obvious lesion sites to affect remote brain networks. We explored this hypothesis in the context of a simple and well-characterized network, the motor network. The aim of this cross-sectional study was to establish the residual integrity of the motor network as an important proof of principle of abnormal connectivity in TBI. METHODS: fMRI data were obtained from 12 right-handed patients and 9 healthy controls while they performed the finger-thumb opposition task with the right hand. We used both conventional and psychophysiologic interaction (PPI) analyses to examine the integrity of functional connections from brain regions we found to be activated in the paradigm we used. RESULTS: As expected, the analysis showed significant activations of the left primary motor cortex (M1), right cerebellum (Ce), and bilateral supplementary motor area (SMA) in controls. However, only the activation of M1 survived robust statistical thresholding in patients. In controls, the PPI analysis revealed that left M1, SMA, and right Ce positively interacted with the left frontal cortex and negatively interacted with the right supramarginal gyrus. In patients, we observed no negative interaction and reduced interhemispheric interactions from these seed regions. CONCLUSIONS: These observations suggest that patients display compromised activation and connectivity patterns during the finger-thumb opposition task, which may imply functional reorganization of motor networks following TBI.


Subject(s)
Brain Injuries/physiopathology , Motor Cortex/physiopathology , Nerve Net/physiopathology , Adult , Analysis of Variance , Brain Injuries/pathology , Brain Mapping , Cross-Sectional Studies , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Motor Activity/physiology , Motor Cortex/pathology , Movement/physiology , Nerve Net/pathology , Neural Pathways/pathology , Neural Pathways/physiopathology , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...