Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Nat Genet ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839884

ABSTRACT

Restless legs syndrome (RLS) affects up to 10% of older adults. Their healthcare is impeded by delayed diagnosis and insufficient treatment. To advance disease prediction and find new entry points for therapy, we performed meta-analyses of genome-wide association studies in 116,647 individuals with RLS (cases) and 1,546,466 controls of European ancestry. The pooled analysis increased the number of risk loci eightfold to 164, including three on chromosome X. Sex-specific meta-analyses revealed largely overlapping genetic predispositions of the sexes (rg = 0.96). Locus annotation prioritized druggable genes such as glutamate receptors 1 and 4, and Mendelian randomization indicated RLS as a causal risk factor for diabetes. Machine learning approaches combining genetic and nongenetic information performed best in risk prediction (area under the curve (AUC) = 0.82-0.91). In summary, we identified targets for drug development and repurposing, prioritized potential causal relationships between RLS and relevant comorbidities and risk factors for follow-up and provided evidence that nonlinear interactions are likely relevant to RLS risk prediction.

2.
iScience ; 26(11): 108214, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37953943

ABSTRACT

Repetitive sequences represent about 45% of the human genome. Some are transposable elements (TEs) with the ability to change their position in the genome, creating genetic variability both as insertions or deletions, with potential pathogenic consequences. We used long-read nanopore sequencing to identify TE variants in the genomes of 24 patients with antithrombin deficiency. We identified 7 344 TE insertions and 3 056 TE deletions, 2 926 were not previously described in publicly available databases. The insertions affected 3 955 genes, with 6 insertions located in exons, 3 929 in introns, and 147 in promoters. Potential functional impact was evaluated with gene annotation and enrichment analysis, which suggested a strong relationship with neuron-related functions and autism. We conclude that this study encourages the generation of a complete map of TEs in the human genome, which will be useful for identifying new TEs involved in genetic disorders.

3.
Nat Commun ; 14(1): 5023, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596262

ABSTRACT

Blood cells contain functionally important intracellular structures, such as granules, critical to immunity and thrombosis. Quantitative variation in these structures has not been subjected previously to large-scale genetic analysis. We perform genome-wide association studies of 63 flow-cytometry derived cellular phenotypes-including cell-type specific measures of granularity, nucleic acid content and reactivity-in 41,515 participants in the INTERVAL study. We identify 2172 distinct variant-trait associations, including associations near genes coding for proteins in organelles implicated in inflammatory and thrombotic diseases. By integrating with epigenetic data we show that many intracellular structures are likely to be determined in immature precursor cells. By integrating with proteomic data we identify the transcription factor FOG2 as an early regulator of platelet formation and α-granularity. Finally, we show that colocalisation of our associations with disease risk signals can suggest aetiological cell-types-variants in IL2RA and ITGA4 respectively mirror the known effects of daclizumab in multiple sclerosis and vedolizumab in inflammatory bowel disease.


Subject(s)
Genome-Wide Association Study , Proteomics , Microscopy , Transcription Factors , Causality
4.
Blood ; 142(24): 2055-2068, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37647632

ABSTRACT

Rare genetic diseases affect millions, and identifying causal DNA variants is essential for patient care. Therefore, it is imperative to estimate the effect of each independent variant and improve their pathogenicity classification. Our study of 140 214 unrelated UK Biobank (UKB) participants found that each of them carries a median of 7 variants previously reported as pathogenic or likely pathogenic. We focused on 967 diagnostic-grade gene (DGG) variants for rare bleeding, thrombotic, and platelet disorders (BTPDs) observed in 12 367 UKB participants. By association analysis, for a subset of these variants, we estimated effect sizes for platelet count and volume, and odds ratios for bleeding and thrombosis. Variants causal of some autosomal recessive platelet disorders revealed phenotypic consequences in carriers. Loss-of-function variants in MPL, which cause chronic amegakaryocytic thrombocytopenia if biallelic, were unexpectedly associated with increased platelet counts in carriers. We also demonstrated that common variants identified by genome-wide association studies (GWAS) for platelet count or thrombosis risk may influence the penetrance of rare variants in BTPD DGGs on their associated hemostasis disorders. Network-propagation analysis applied to an interactome of 18 410 nodes and 571 917 edges showed that GWAS variants with large effect sizes are enriched in DGGs and their first-order interactors. Finally, we illustrate the modifying effect of polygenic scores for platelet count and thrombosis risk on disease severity in participants carrying rare variants in TUBB1 or PROC and PROS1, respectively. Our findings demonstrate the power of association analyses using large population datasets in improving pathogenicity classifications of rare variants.


Subject(s)
Genome-Wide Association Study , Thrombosis , Humans , Biological Specimen Banks , Hemostasis , Hemorrhage/genetics , Rare Diseases
5.
Blood ; 142(22): 1895-1908, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37647652

ABSTRACT

Genetic studies of platelet reactivity (PR) phenotypes may identify novel antiplatelet drug targets. However, such studies have been limited by small sample sizes (n < 5000) because of the complexity of measuring PR. We trained a model to predict PR from complete blood count (CBC) scattergrams. A genome-wide association study of this phenotype in 29 806 blood donors identified 21 distinct associations implicating 20 genes, of which 6 have been identified previously. The effect size estimates were significantly correlated with estimates from a study of flow cytometry-measured PR and a study of a phenotype of in vitro thrombus formation. A genetic score of PR built from the 21 variants was associated with the incidence rates of myocardial infarction and pulmonary embolism. Mendelian randomization analyses showed that PR was causally associated with the risks of coronary artery disease, stroke, and venous thromboembolism. Our approach provides a blueprint for using phenotype imputation to study the determinants of hard-to-measure but biologically important hematological traits.


Subject(s)
Platelet Aggregation Inhibitors , Thrombosis , Humans , Platelet Aggregation Inhibitors/pharmacology , Genome-Wide Association Study , Blood Platelets , Thrombosis/genetics , Blood Cell Count
7.
Nat Commun ; 13(1): 6143, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253349

ABSTRACT

Stroke is the second leading cause of death with substantial unmet therapeutic needs. To identify potential stroke therapeutic targets, we estimate the causal effects of 308 plasma proteins on stroke outcomes in a two-sample Mendelian randomization framework and assess mediation effects by stroke risk factors. We find associations between genetically predicted plasma levels of six proteins and stroke (P ≤ 1.62 × 10-4). The genetic associations with stroke colocalize (Posterior Probability >0.7) with the genetic associations of four proteins (TFPI, TMPRSS5, CD6, CD40). Mendelian randomization supports atrial fibrillation, body mass index, smoking, blood pressure, white matter hyperintensities and type 2 diabetes as stroke risk factors (P ≤ 0.0071). Body mass index, white matter hyperintensity and atrial fibrillation appear to mediate the TFPI, IL6RA, TMPRSS5 associations with stroke. Furthermore, thirty-six proteins are associated with one or more of these risk factors using Mendelian randomization. Our results highlight causal pathways and potential therapeutic targets for stroke.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Type 2 , Stroke , Atrial Fibrillation/genetics , Blood Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Proteome/genetics , Risk Factors , Stroke/genetics
8.
Thromb Haemost ; 122(8): 1369-1378, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35764313

ABSTRACT

The identification of inherited antithrombin deficiency (ATD) is critical to prevent potentially life-threatening thrombotic events. Causal variants in SERPINC1 are identified for up to 70% of cases, the majority being single-nucleotide variants and indels. The detection and characterization of structural variants (SVs) in ATD remain challenging due to the high number of repetitive elements in SERPINC1. Here, we performed long-read whole-genome sequencing on 10 familial and 9 singleton cases with type I ATD proven by functional and antigen assays, who were selected from a cohort of 340 patients with this rare disorder because genetic analyses were either negative, ambiguous, or not fully characterized. We developed an analysis workflow to identify disease-associated SVs. This approach resolved, independently of its size or type, all eight SVs detected by multiple ligation-dependent probe amplification, and identified for the first time a complex rearrangement previously misclassified as a deletion. Remarkably, we identified the mechanism explaining ATD in 2 out of 11 cases with previous unknown defect: the insertion of a novel 2.4 kb SINE-VNTR-Alu retroelement, which was characterized by de novo assembly and verified by specific polymerase chain reaction amplification and sequencing in the probands and affected relatives. The nucleotide-level resolution achieved for all SVs allowed breakpoint analysis, which revealed repetitive elements and microhomologies supporting a common replication-based mechanism for all the SVs. Our study underscores the utility of long-read sequencing technology as a complementary method to identify, characterize, and unveil the molecular mechanism of disease-causing SVs involved in ATD, and enlarges the catalogue of genetic disorders caused by retrotransposon insertions.


Subject(s)
Antithrombin III Deficiency , Retroelements , Antithrombin III Deficiency/diagnosis , Antithrombin III Deficiency/genetics , Antithrombins , Humans , Nucleotides , Retroelements/genetics
9.
Am J Hum Genet ; 109(6): 1038-1054, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35568032

ABSTRACT

Metabolite levels measured in the human population are endophenotypes for biological processes. We combined sequencing data for 3,924 (whole-exome sequencing, WES, discovery) and 2,805 (whole-genome sequencing, WGS, replication) donors from a prospective cohort of blood donors in England. We used multiple approaches to select and aggregate rare genetic variants (minor allele frequency [MAF] < 0.1%) in protein-coding regions and tested their associations with 995 metabolites measured in plasma by using ultra-high-performance liquid chromatography-tandem mass spectrometry. We identified 40 novel associations implicating rare coding variants (27 genes and 38 metabolites), of which 28 (15 genes and 28 metabolites) were replicated. We developed algorithms to prioritize putative driver variants at each locus and used mediation and Mendelian randomization analyses to test directionality at associations of metabolite and protein levels at the ACY1 locus. Overall, 66% of reported associations implicate gene targets of approved drugs or bioactive drug-like compounds, contributing to drug targets' validating efforts.


Subject(s)
Exome , Exome/genetics , Gene Frequency/genetics , Humans , Prospective Studies , Exome Sequencing/methods , Whole Genome Sequencing
10.
iScience ; 25(3): 103971, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35224470

ABSTRACT

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

11.
Cell Genom ; 2(1): None, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35072137

ABSTRACT

Genetic association studies for blood cell traits, which are key indicators of health and immune function, have identified several hundred associations and defined a complex polygenic architecture. Polygenic scores (PGSs) for blood cell traits have potential clinical utility in disease risk prediction and prevention, but designing PGS remains challenging and the optimal methods are unclear. To address this, we evaluated the relative performance of 6 methods to develop PGS for 26 blood cell traits, including a standard method of pruning and thresholding (P + T) and 5 learning methods: LDpred2, elastic net (EN), Bayesian ridge (BR), multilayer perceptron (MLP) and convolutional neural network (CNN). We evaluated these optimized PGSs on blood cell trait data from UK Biobank and INTERVAL. We find that PGSs designed using common machine learning methods EN and BR show improved prediction of blood cell traits and consistently outperform other methods. Our analyses suggest EN/BR as the top choices for PGS construction, showing improved performance for 25 blood cell traits in the external validation, with correlations with the directly measured traits increasing by 10%-23%. Ten PGSs showed significant statistical interaction with sex, and sex-specific PGS stratification showed that all of them had substantial variation in the trajectories of blood cell traits with age. Genetic correlations between the PGSs for blood cell traits and common human diseases identified well-known as well as new associations. We develop machine learning-optimized PGS for blood cell traits, demonstrate their relationships with sex, age, and disease, and make these publicly available as a resource.

12.
Blood Adv ; 6(7): 2319-2330, 2022 04 12.
Article in English | MEDLINE | ID: mdl-34581777

ABSTRACT

The interindividual variation in the functional response of platelets to activation by agonists is heritable. Genome-wide association studies (GWASs) of quantitative measures of platelet function have identified fewer than 20 distinctly associated variants, some with unknown mechanisms. Here, we report GWASs of pathway-specific functional responses to agonism by adenosine 5'-diphosphate, a glycoprotein VI-specific collagen mimetic, and thrombin receptor-agonist peptides, each specific to 1 of the G protein-coupled receptors PAR-1 and PAR-4, in subsets of 1562 individuals. We identified an association (P = 2.75 × 10-40) between a common intronic variant, rs10886430, in the G protein-coupled receptor kinase 5 gene (GRK5) and the sensitivity of platelets to activate through PAR-1. The variant resides in a megakaryocyte-specific enhancer that is bound by the transcription factors GATA1 and MEIS1. The minor allele (G) is associated with fewer GRK5 transcripts in platelets and the greater sensitivity of platelets to activate through PAR-1. We show that thrombin-mediated activation of human platelets causes binding of GRK5 to PAR-1 and that deletion of the mouse homolog Grk5 enhances thrombin-induced platelet activation sensitivity and increases platelet accumulation at the site of vascular injury. This corroborates evidence that the human G allele of rs10886430 is associated with a greater risk for cardiovascular disease. In summary, by combining the results of pathway-specific GWASs and expression quantitative trait locus studies in humans with the results from platelet function studies in Grk5-/- mice, we obtain evidence that GRK5 regulates the human platelet response to thrombin via the PAR-1 pathway.


Subject(s)
Blood Platelets , Thrombin , Animals , Blood Platelets/metabolism , Genome-Wide Association Study , Mice , Platelet Activation , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Thrombin/metabolism , Thrombin/pharmacology
13.
RNA ; 28(2): 194-209, 2022 02.
Article in English | MEDLINE | ID: mdl-34732567

ABSTRACT

Each day, about 1012 erythrocytes and platelets are released into the bloodstream. This substantial output from hematopoietic stem cells is tightly regulated by transcriptional and epigenetic factors. Whether and how circular RNAs (circRNAs) contribute to the differentiation and/or identity of hematopoietic cells is to date not known. We recently reported that erythrocytes and platelets contain the highest levels and numbers of circRNAs among hematopoietic cells. Here, we provide the first detailed analysis of circRNA expression during erythroid and megakaryoid differentiation. CircRNA expression not only significantly increased upon enucleation, but also had limited overlap between progenitor cells and mature cells, suggesting that circRNA expression stems from regulated processes rather than resulting from mere accumulation. To study circRNA function in hematopoiesis, we first compared the expression levels of circRNAs with the translation efficiency of their mRNA counterpart. We found that only one out of 2531 (0.04%) circRNAs associated with mRNA-translation regulation. Furthermore, irrespective of thousands of identified putative open reading frames, deep ribosome-footprinting sequencing, and mass spectrometry analysis provided little evidence for translation of endogenously expressed circRNAs. In conclusion, circRNAs alter their expression profile during terminal hematopoietic differentiation, yet their contribution to regulate cellular processes remains enigmatic.


Subject(s)
Hematopoiesis , RNA, Circular/metabolism , RNA, Messenger/genetics , Cells, Cultured , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Protein Biosynthesis , RNA, Circular/genetics , RNA, Messenger/metabolism , Transcriptome
14.
Nat Metab ; 3(11): 1476-1483, 2021 11.
Article in English | MEDLINE | ID: mdl-34750571

ABSTRACT

Cardiometabolic diseases are frequently polygenic in architecture, comprising a large number of risk alleles with small effects spread across the genome1-3. Polygenic scores (PGS) aggregate these into a metric representing an individual's genetic predisposition to disease. PGS have shown promise for early risk prediction4-7 and there is an open question as to whether PGS can also be used to understand disease biology8. Here, we demonstrate that cardiometabolic disease PGS can be used to elucidate the proteins underlying disease pathogenesis. In 3,087 healthy individuals, we found that PGS for coronary artery disease, type 2 diabetes, chronic kidney disease and ischaemic stroke are associated with the levels of 49 plasma proteins. Associations were polygenic in architecture, largely independent of cis and trans protein quantitative trait loci and present for proteins without quantitative trait loci. Over a follow-up of 7.7 years, 28 of these proteins associated with future myocardial infarction or type 2 diabetes events, 16 of which were mediators between polygenic risk and incident disease. Twelve of these were druggable targets with therapeutic potential. Our results demonstrate the potential for PGS to uncover causal disease biology and targets with therapeutic potential, including those that may be missed by approaches utilizing information at a single locus.


Subject(s)
Blood Proteins , Heart Diseases/etiology , Heart Diseases/metabolism , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Multifactorial Inheritance , Proteome , Adult , Biomarkers , Disease Management , Disease Susceptibility , England/epidemiology , Female , Genetic Predisposition to Disease , Heart Diseases/diagnosis , Heart Diseases/epidemiology , Humans , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/epidemiology , Middle Aged , Public Health Surveillance , Young Adult
15.
Nat Genet ; 53(10): 1425-1433, 2021 10.
Article in English | MEDLINE | ID: mdl-34611362

ABSTRACT

Telomeres, the end fragments of chromosomes, play key roles in cellular proliferation and senescence. Here we characterize the genetic architecture of naturally occurring variation in leukocyte telomere length (LTL) and identify causal links between LTL and biomedical phenotypes in 472,174 well-characterized UK Biobank participants. We identified 197 independent sentinel variants associated with LTL at 138 genomic loci (108 new). Genetically determined differences in LTL were associated with multiple biological traits, ranging from height to bone marrow function, as well as several diseases spanning neoplastic, vascular and inflammatory pathologies. Finally, we estimated that, at the age of 40 years, people with an LTL >1 s.d. shorter than the population mean had a 2.5-year-lower life expectancy compared with the group with ≥1 s.d. longer LDL. Overall, we furnish new insights into the genetic regulation of LTL, reveal wide-ranging influences of LTL on physiological traits, diseases and longevity, and provide a powerful resource available to the global research community.


Subject(s)
Multifactorial Inheritance/genetics , Telomere Homeostasis/genetics , Genome, Human , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Quantitative Trait Loci
16.
J Thromb Haemost ; 19(10): 2612-2617, 2021 10.
Article in English | MEDLINE | ID: mdl-34355501

ABSTRACT

The implementation of high-throughput sequencing (HTS) technologies in research and diagnostic laboratories has linked many new genes to rare bleeding, thrombotic, and platelet disorders (BTPD), and revealed multiple genetic variants linked to those disorders, many of them being of uncertain pathogenicity when considering the accepted evidence (variant consequence, frequency in control datasets, number of reported patients, prediction models, and functional assays). The sequencing effort has also resulted in resources for gathering disease-causing variants associated with specific genes, but for BTPD, such well-curated databases exist only for a few genes. On the other hand, submissions by individuals or diagnostic laboratories to the variant database ClinVar are hampered by the lack of a submission process tailored to capture the specific features of hemostatic diseases. As we move toward the implementation of HTS in the diagnosis of BTPD, the Scientific and Standardization Committee for Genetics in Thrombosis and Haemostasis has developed and tested a REDCap-based interface, aimed at the community, to submit curated genetic variants for diagnostic-grade BTPD genes. Here, we describe the use of the interface and the initial submission of 821 variants from 30 different centers covering 14 countries. This open-access variant resource will be shared with the community to improve variant classification and regular bulk data transfer to ClinVar.


Subject(s)
Blood Platelet Disorders , Thrombosis , Blood Platelet Disorders/diagnosis , Blood Platelet Disorders/genetics , Communication , Genomics , Hemostasis/genetics , Humans , Thrombosis/diagnosis , Thrombosis/genetics
17.
Nat Med ; 27(9): 1564-1575, 2021 09.
Article in English | MEDLINE | ID: mdl-34426706

ABSTRACT

Mitochondrial DNA (mtDNA) variants influence the risk of late-onset human diseases, but the reasons for this are poorly understood. Undertaking a hypothesis-free analysis of 5,689 blood-derived biomarkers with mtDNA variants in 16,220 healthy donors, here we show that variants defining mtDNA haplogroups Uk and H4 modulate the level of circulating N-formylmethionine (fMet), which initiates mitochondrial protein translation. In human cytoplasmic hybrid (cybrid) lines, fMet modulated both mitochondrial and cytosolic proteins on multiple levels, through transcription, post-translational modification and proteolysis by an N-degron pathway, abolishing known differences between mtDNA haplogroups. In a further 11,966 individuals, fMet levels contributed to all-cause mortality and the disease risk of several common cardiovascular disorders. Together, these findings indicate that fMet plays a key role in common age-related disease through pleiotropic effects on cell proteostasis.


Subject(s)
Biomarkers/blood , Cardiovascular Diseases/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Age of Onset , Blood Donors , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , DNA, Mitochondrial/blood , Female , Follow-Up Studies , Haplotypes/genetics , Humans , Male , Middle Aged , Mitochondria/pathology , N-Formylmethionine/metabolism , Proteostasis , Risk Factors , United Kingdom/epidemiology
18.
Int J Obes (Lond) ; 45(10): 2221-2229, 2021 10.
Article in English | MEDLINE | ID: mdl-34226637

ABSTRACT

BACKGROUND: Variation in adiposity is associated with cardiometabolic disease outcomes, but mechanisms leading from this exposure to disease are unclear. This study aimed to estimate effects of body mass index (BMI) on an extensive set of circulating proteins. METHODS: We used SomaLogic proteomic data from up to 2737 healthy participants from the INTERVAL study. Associations between self-reported BMI and 3622 unique plasma proteins were explored using linear regression. These were complemented by Mendelian randomisation (MR) analyses using a genetic risk score (GRS) comprised of 654 BMI-associated polymorphisms from a recent genome-wide association study (GWAS) of adult BMI. A disease enrichment analysis was performed using DAVID Bioinformatics 6.8 for proteins which were altered by BMI. RESULTS: Observationally, BMI was associated with 1576 proteins (P < 1.4 × 10-5), with particularly strong evidence for a positive association with leptin and fatty acid-binding protein-4 (FABP4), and a negative association with sex hormone-binding globulin (SHBG). Observational estimates were likely confounded, but the GRS for BMI did not associate with measured confounders. MR analyses provided evidence for a causal relationship between BMI and eight proteins including leptin (0.63 standard deviation (SD) per SD BMI, 95% CI 0.48-0.79, P = 1.6 × 10-15), FABP4 (0.64 SD per SD BMI, 95% CI 0.46-0.83, P = 6.7 × 10-12) and SHBG (-0.45 SD per SD BMI, 95% CI -0.65 to -0.25, P = 1.4 × 10-5). There was agreement in the magnitude of observational and MR estimates (R2 = 0.33) and evidence that proteins most strongly altered by BMI were enriched for genes involved in cardiovascular disease. CONCLUSIONS: This study provides evidence for a broad impact of adiposity on the human proteome. Proteins strongly altered by BMI include those involved in regulating appetite, sex hormones and inflammation; such proteins are also enriched for cardiovascular disease-related genes. Altogether, results help focus attention onto new proteomic signatures of obesity-related disease.


Subject(s)
Adiposity/physiology , Proteome/analysis , Adult , Body Mass Index , Cohort Studies , Female , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Prospective Studies , Proteome/metabolism , Surveys and Questionnaires
19.
J Am Soc Nephrol ; 32(7): 1747-1763, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34135082

ABSTRACT

BACKGROUND: Studies on the relationship between renal function and the human plasma proteome have identified several potential biomarkers. However, investigations have been conducted largely in European populations, and causality of the associations between plasma proteins and kidney function has never been addressed. METHODS: A cross-sectional study of 993 plasma proteins among 2882 participants in four studies of European and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified transethnic associations between eGFR/CKD and proteomic biomarkers. For the replicated associations, two-sample bidirectional Mendelian randomization (MR) was used to investigate potential causal relationships. Publicly available datasets and transcriptomic data from independent studies were used to examine the association between gene expression in kidney tissue and eGFR. RESULTS: In total, 57 plasma proteins were associated with eGFR, including one novel protein. Of these, 23 were additionally associated with CKD. The strongest inferred causal effect was the positive effect of eGFR on testican-2, in line with the known biological role of this protein and the expression of its protein-coding gene (SPOCK2) in renal tissue. We also observed suggestive evidence of an effect of melanoma inhibitory activity (MIA), carbonic anhydrase III, and cystatin-M on eGFR. CONCLUSIONS: In a discovery-replication setting, we identified 57 proteins transethnically associated with eGFR. The revealed causal relationships are an important stepping stone in establishing testican-2 as a clinically relevant physiological marker of kidney disease progression, and point to additional proteins warranting further investigation.

20.
J Thromb Haemost ; 19(5): 1236-1249, 2021 05.
Article in English | MEDLINE | ID: mdl-33587817

ABSTRACT

BACKGROUND: Megakaryocytes (MKs) originate from cells immuno-phenotypically indistinguishable from hematopoietic stem cells (HSCs), bypassing intermediate progenitors. They mature within the adult bone marrow and release platelets into the circulation. Until now, there have been no transcriptional studies of primary human bone marrow MKs. OBJECTIVES: To characterize MKs and HSCs from human bone marrow using single-cell RNA sequencing, to investigate MK lineage commitment, maturation steps, and thrombopoiesis. RESULTS: We show that MKs at different levels of polyploidization exhibit distinct transcriptional states. Although high levels of platelet-specific gene expression occur in the lower ploidy classes, as polyploidization increases, gene expression is redirected toward translation and posttranslational processing transcriptional programs, in preparation for thrombopoiesis. Our findings are in keeping with studies of MK ultrastructure and supersede evidence generated using in vitro cultured MKs. Additionally, by analyzing transcriptional signatures of a single HSC, we identify two MK-biased HSC subpopulations exhibiting unique differentiation kinetics. We show that human bone marrow MKs originate from these HSC subpopulations, supporting the notion that they display priming for MK differentiation. Finally, to investigate transcriptional changes in MKs associated with stress thrombopoiesis, we analyzed bone marrow MKs from individuals with recent myocardial infarction and found a specific gene expression signature. Our data support the modulation of MK differentiation in this thrombotic state. CONCLUSIONS: Here, we use single-cell sequencing for the first time to characterize the human bone marrow MK transcriptome at different levels of polyploidization and investigate their differentiation from the HSC.


Subject(s)
Megakaryocytes , Thrombopoiesis , Blood Platelets , Bone Marrow , Cell Differentiation , Humans , Thrombopoiesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...