Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 7(1): 144, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28273944

ABSTRACT

Composite hollow nanostructure composed by transition metal oxides are promising materials in electrochemistry, catalyst chemistry and material science. In this contribution, necklace-like NiO-CuO heterogeneous composite hollow nanostructures were synthesized by annealing Ni/Cu superlattice nanowires in air. Two kinds of morphologies including CuO nanotube linked core-shell structures and CuO nanotube linked hollow structures were obtained. The structure can be tuned easily by adjusting the relative length of Cu segments in Ni/Cu superlattice nanowires and the annealing temperature. The relative diffusion amount of Cu to Ni segments was proved to be the key factor to influence the annealed sample morphology. The formation mechanism was discussed in detail based on Kirkendal effect and high temperature oxidation of alloy. We demonstrated that hollow structure or core-shell structure is related to whether the oxidation exists only in external sites or co-exists in external and internal sites during annealing.

2.
Chem Commun (Camb) ; 50(92): 14317-20, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-24955939

ABSTRACT

This communication reports an approach to fabricate large-scale ultrathin open-ended porous TiO2 membranes (UOP-TMs) with ordered straight-through pores. Bi nanodot arrays on Si substrates are obtained by using the UOP-TMs as surface patterning masks.

3.
Sci Rep ; 4: 3601, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24398625

ABSTRACT

Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

4.
Sheng Wu Gong Cheng Xue Bao ; 19(3): 317-20, 2003 May.
Article in Chinese | MEDLINE | ID: mdl-15969014

ABSTRACT

Plant cells response to water deficit through a variety of physiological processes. In this work, we studied the function of microtubule cytoskeleton during dehydration/rehydration cycle in moss (Atrichum undulatum) protonemal cells as a model system. The morphological and cytological change of protonemal cells during dehydration and rehydration cycle were first investigated. Under normal conditions, protonemal cells showed bright green colour and appeared wet and fresh. Numerous chloroplasts distributed regularly throughout the cytoplasm in each cell. After dehydration treatment, protonemal cells lost most of their chlorophylls and turned to look yellow and dry. In addition, dehydration caused plasmolysis in these cells. Upon rehydration, the cells could recover completely from the dehydrated state. These results indicated that moss had a remarkable intrinsic ability to survive from the extreme drought stress. Microtubule, an important component of cytoskeleton, is considered to play crucial roles in the responses to some environmental stresses such as cold and light. To see if it is also involved in the drought tolerance, dynamic organization of microtubules in protonemal cells of Atrichum undulatum subjected to drought and rehydration were examined by indirect immunofluorescence combined with confocal lasersharp scanning microscopy. The cortical microtubules were arranged into a fine structure with a predominant orientation parallel to the long axis of the cells in the control cells. After dehydration, the microtubule organization was remarkablly altered and the fine microtubule structure disappeared whereas some thicker cables formed. When the cells were grown under rehydration conditions, the fine microtubule arrays reappeared. These results provided a piece of evidence that microtubules play a role in the cellular responses to drought stress in moss. Furthermore, we analyzed the effects of the microtubule-disrupting agent colchicine on the morphology recovery of the protonemal cells during rehydration process. The cells were incubated with colchicine, followed by drought stress treatment and rehydration in the presence of colchicine to prevent recovery of microtubule organization. Results from immunofluorescence showed that microtubule arrays were broken down into smaller fragments. Compared to the cells treated with drought stress alone, the cells treated with drought stress in the presence of colchicine could not recover after rehydration treatment. The morphology resembled those of the drought treated cells, with obvious plasmolysis phenomena and loss of chlorophyll content. These results support the notion that microtubules were involved in the deccication tolerance mechanism in Atrichum undulatum.


Subject(s)
Bryophyta/metabolism , Droughts , Microtubules/metabolism , Bryophyta/physiology , Gene Expression Regulation, Plant/physiology , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...