Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Plant Biol ; 66(6): 1106-1125, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558522

ABSTRACT

It is generally accepted that jasmonate-ZIM domain (JAZ) repressors act to mediate jasmonate (JA) signaling via CORONATINE-INSENSITIVE1 (COI1)-mediated degradation. Here, we report a cryptic signaling cascade where a JAZ repressor, FvJAZ12, mediates multiple signaling inputs via phosphorylation-modulated subcellular translocation rather than the COI1-mediated degradation mechanism in strawberry (Fragaria vesca). FvJAZ12 acts to regulate flavor metabolism and defense response, and was found to be the target of FvMPK6, a mitogen-activated protein kinase that is capable of responding to multiple signal stimuli. FvMPK6 phosphorylates FvJAZ12 at the amino acid residues S179 and T183 adjacent to the PY residues, thereby attenuating its nuclear accumulation and relieving its repression for FvMYC2, which acts to control the expression of lipoxygenase 3 (FvLOX3), an important gene involved in JA biosynthesis and a diverse array of cellular metabolisms. Our data reveal a previously unreported mechanism for JA signaling and decipher a signaling cascade that links multiple signaling inputs with fruit trait development.


Subject(s)
Cyclopentanes , Fruit , Gene Expression Regulation, Plant , Oxylipins , Plant Proteins , Signal Transduction , Phosphorylation , Cyclopentanes/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Fruit/metabolism , Fruit/growth & development , Oxylipins/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Fragaria/metabolism , Fragaria/genetics , Cell Nucleus/metabolism
2.
Hortic Res ; 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35043192

ABSTRACT

Abscisic acid (ABA) plays a major role in the regulation of strawberry fruit ripening; however, the origin of the ABA signal is largely unknown. Here, we report an autocatalytic mechanism for ABA biosynthesis and its synergistic interaction with the auxin to regulate strawberry fruit ripening. We demonstrate that ABA biosynthesis is self-induced in the achenes, but not in the receptacle, which results its substantial accumulation during ripening. ABA was found to regulate both IAA transport and biosynthesis, thereby modulating IAA content during both early fruit growth and later during ripening. Taken together, these results reveal the origins of the ABA signal and demonstrate the importance of its coordinated action with IAA in the regulation of strawberry fruit development and ripening.

3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638834

ABSTRACT

Strawberry (Fragaria × ananassa) fruit ripening is regulated by a complex of cellular signal transduction networks, in which protein kinases are key components. Here, we report a relatively simple method for assaying protein kinase activity in vivo and specifically its application to study the kinase, FaMPK6, signaling in strawberry fruit. Green fluorescent protein (GFP)-tagged FaMPK6 was transiently expressed in strawberry fruit and after stimuli were applied to the fruit it was precipitated using an anti-GFP antibody. The precipitated kinase activity was measured in vitro using 32P-ATP and myelin basic protein (MBP) as substrates. We also report that FaMPK6 is not involved in the abscisic acid (ABA) signaling cascade, which is closely associated with FaMPK6 signaling in other plant species. However, methyl jasmonate (MeJA), low temperature, and high salt treatments were all found to activate FaMPK6. Transient manipulation of FaMPK6 expression was observed to cause significant changes in the expression patterns of 2749 genes, of which 264 were associated with MeJA signaling. The data also suggest a role for FaMPK6 in modulating cell wall metabolism during fruit ripening. Taken together, the presented method is powerful and its use will contribute to a profound exploration to the signaling mechanism of strawberry fruit ripening.


Subject(s)
Fragaria/metabolism , Fruit/growth & development , Mitogen-Activated Protein Kinases/metabolism , Plant Proteins/metabolism , Signal Transduction , Fragaria/genetics , Fruit/genetics , Mitogen-Activated Protein Kinases/genetics , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...