Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 284: 116884, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39153281

ABSTRACT

Diminished testosterone levels have been documented as a key factor in numerous male health disorders. Both human and animal studies have consistently demonstrated that cadmium (Cd), a pervasive environmental heavy metal, results in decreased testosterone levels. However, the exact mechanism through which Cd interferes with testosterone synthesis remains incompletely elucidated. This research sought to examine the impact of cellular senescence on Cd-suppressed testosterone synthesis. We also investigated the related m6A modification mechanism. The results demonstrated that Cd (100 mg/L) led to a decrease in testosterone levels, along with downregulated expression of testosterone synthase in C57BL/6 N male mice. Furthermore, Cd significantly increased ß-galactosidase staining intensity, senescence-related proteins, and senescence-related secretory phenotypes in mouse testicular Leydig cells. Subsequent investigations revealed that Cd decreased the mRNA and protein levels of NAD-dependent deacetylase Sirtuin-1 (SIRT1) in Leydig cells. Mechanistically, mice treated with resveratrol (50 mg/kg), a specific SIRT1 activator, mitigated Leydig cell senescence and reversed Cd-reduced testosterone levels in mouse testes. These effects were also restored by SIRT1 overexpression in Leydig cells. Additionally, we found that Cd increased the level of methyltransferase enzyme METTL3 and Sirt1 m6A modification in Leydig cells. Mettl3 siRNA effectively restored Cd-enhanced Sirt1 m6A level and reversed Cd-downregulated Sirt1 mRNA expression in Leydig cells. Overall, our findings suggest that Cd exposure inhibits testosterone synthesis via Sirt1 m6A modification-mediated senescence in mouse testes. These results offer an experimental basis for investigating the causes and potential treatments of hypotestosteronemia induced by environmental factors.


Subject(s)
Cadmium , Cellular Senescence , Leydig Cells , Mice, Inbred C57BL , Sirtuin 1 , Testosterone , Animals , Leydig Cells/drug effects , Leydig Cells/metabolism , Male , Testosterone/blood , Cadmium/toxicity , Sirtuin 1/metabolism , Sirtuin 1/genetics , Cellular Senescence/drug effects , Mice , Methyltransferases/metabolism , Methyltransferases/genetics
2.
Food Chem Toxicol ; 192: 114940, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151879

ABSTRACT

Infertility caused by lipopolysaccharide (LPS) exposure due to infection is endangering male fertility worldwide, but the mechanism remains unclear. The blood-testis barrier (BTB) is essential for maintaining spermatogenesis and male fertility. In the present study, we showed that LPS (5.0 mg/kg) treatment markedly down-regulated the expression of BTB-related proteins, expanded the biotin penetration distance and caused histopathological injury in seminiferous tubules in mouse testes. Notably, testicular macrophage M1 polarization induced by LPS seems to be related to BTB damage, which was well confirmed by co-culture of RAW264.7 and TM4 cells in vitro. Interestingly, a low-dose LPS (0.1 mg/kg) pretreatment attenuated down-regulation of BTB-related proteins expression and histopathological injury and shorten biotin penetration distance in seminiferous tubules caused by LPS. Correspondingly, a low-dose LPS pretreatment suppresses testicular macrophage M1 polarization induced by LPS in mouse testes. Further experiments revealed that histone deacetylase 5 (HDAC5) was markedly down-regulated at 2 h and slightly down-regulated at 8 h, but up-regulated at 24 h in mouse testes after LPS treatment. Additionally, low-dose LPS pretreatment against the down-regulation of HDAC5 protein caused by LPS treatment. Notably, the suppressed testicular macrophage M1 polarization by low-dose LPS pretreatment was broken by BRD4354, a specific inhibitor of HDAC5 in vitro. These results suggest suppressed testicular macrophage M1 polarization by HDAC5 enforces insensitivity to LPS-elicited BTB damage.


Subject(s)
Blood-Testis Barrier , Histone Deacetylases , Lipopolysaccharides , Macrophages , Animals , Male , Lipopolysaccharides/toxicity , Blood-Testis Barrier/drug effects , Mice , Macrophages/drug effects , Macrophages/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Testis/drug effects , Testis/metabolism , RAW 264.7 Cells
3.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703850

ABSTRACT

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Subject(s)
Cadmium , Mitochondria , Pyroptosis , Testis , Animals , Cadmium/toxicity , Male , Mice , Testis/drug effects , Testis/metabolism , Pyroptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Environmental Pollutants/toxicity , Proteostasis , Mitochondrial Proteins/metabolism , Environmental Exposure/adverse effects , DNA, Mitochondrial , ATP-Dependent Proteases/metabolism , Proteotoxic Stress
4.
J Hazard Mater ; 470: 134142, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555669

ABSTRACT

Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.


Subject(s)
Cadmium , Environmental Pollutants , Leydig Cells , Testis , Testosterone , Ubiquitin-Protein Ligases , Male , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cadmium/toxicity , Testosterone/metabolism , Testis/drug effects , Testis/metabolism , Leydig Cells/drug effects , Leydig Cells/metabolism , Environmental Pollutants/toxicity , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mice, Inbred C57BL , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL