Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 220, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37098472

ABSTRACT

BACKGROUND: The evergreen broadleaved forest (EBLF) is an iconic vegetation type of East Asia, and it contributes fundamentally to biodiversity-based ecosystem functioning and services. However, the native habitat of EBLFs keeps on decreasing due to anthropogenic activities. Ormosia henryi is a valuable rare woody species in EBLFs that is particularly sensitive to habitat loss. In this study, ten natural populations of O. henryi in southern China were sampled, and then genotyping by sequencing (GBS) was applied to elucidate the standing genetic variation and population structure of this endangered species. RESULTS: In ten O. henryi populations, 64,158 high-quality SNPs were generated by GBS. Based on these markers, a relatively low level of genetic diversity was found with the expected heterozygosity (He) ranging from 0.2371 to 0.2901. Pairwise FST between populations varied from 0.0213 to 0.1652, indicating a moderate level of genetic differentiation. However, contemporary gene flow between populations were rare. Assignment test and principal component analysis (PCA) both supported that O. henryi populations in southern China could be divided into four genetic groups, and prominent genetic admixture was found in those populations located in southern Jiangxi Province. Mantel tests and multiple matrix regression with randomization (MMRR) analyses suggested that isolation by distance (IBD) could be the possible reason for describing the current population genetic structure. In addition, the effective population size (Ne) of O. henryi was extremely small, and showed a continuous declining trend since the Last Glacial Period. CONCLUSIONS: Our results indicate that the endangered status of O. henryi is seriously underestimated. Artificial conservation measures should be applied as soon as possible to prevent O. henryi from the fate of extinction. Further studies are needed to elucidate the mechanism that leading to the continuous loss of genetic diversity in O. henryi and help to develop a better conservation strategy.


Subject(s)
Endangered Species , Genetic Variation , Animals , Ecosystem , China , Genetic Structures , Microsatellite Repeats , Genetics, Population
2.
Microorganisms ; 10(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144446

ABSTRACT

Sarcandra glabra in-forest planting, an anthropogenic activity that may introduce a variety of disturbances into the forest, is being popularly promoted in southern China, while its consequential influences on soil nutrients, as well as the arbuscular mycorrhiza fungal (AMF) community of key forest keystone plants, are still unelucidated, which hampers the assessment of ecological safety and the improvement of agronomic measurements. In this research, topsoil from a 3-year-old Sarcandra glabra planted forest and a nearby control forest were sampled, and the annual variation in the soil nutrients and AMF community of the keystone tree Cunninghamia lanceolata were investigated. Our result showed that the total amount of soil organic carbon of the Sarcandra glabra cultivation group was significantly higher than that of the control group (p < 0.05), which indicated that Sarcandra glabra cultivation significantly enhanced the topsoil carbon storage. Yet, there were only insignificant differences in the Shannon index and Chao index of the AMF community between the two groups (p > 0.05). PCoA analysis found that the compositional differences between two groups were also insignificant. This indicated that Sarcandra glabra cultivation had no significant influence on the diversity and composition of the Cunninghamia lanceolata AMF community. However, we found that the differences in the total amounts of nitrogen and total phosphorus between the two groups were relatively lower in April and September, which indicated the higher nutrient demands and consumption of Sarcandra glabra in these two periods and suggested that a sufficient fertilizer application in these two stages would reduce the potential competition for nutrients between Sarcandra glabra and Cunninghamia lanceolata in order to ensure Sarcandra glabra production and forest health. Lastly, our results reported a total extra income ranging from of CNY 127,700 hm−2 (7 years of cultivation) to CNY 215,300 hm−2 (10 years cultivation) provided by Sarcandra glabra in-forest planting, which indicated its powerful potential for mitigating poverty. Our research systematically investigated the annual variation in the soil nutrient content and keystone tree AMF community caused by Sarcandra glabra cultivation and offers constructive guidance for Sarcandra glabra cultivation and fertilization management and ecological safety assessment.

SELECTION OF CITATIONS
SEARCH DETAIL
...