Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(22): 14827-35, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25978305

ABSTRACT

Advanced materials for electrocatalytic and photoelectrochemical water splitting are key for taking advantage of renewable energy. In this study, ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays with a nanoporous surface were fabricated via ion exchange and successive ionic layer adsorption and reaction (SILAR) processes. The ZnO/ZnSe/CdSe/Cu(x)S sample displays a high photocurrent density of 12.0 mA cm(-2) under AM 1.5G illumination, achieves the highest IPCE value of 89.5% at 500 nm at a bias potential of 0.2 V versus Ag/AgCl, and exhibits greatly improved photostability. The functions of the ZnSe, CdSe, and Cu(x)S layers in the ZnO/ZnSe/CdSe/Cu(x)S heterostructure were clarified. ZnSe is used as a passivation layer to reduce the trapping and recombination of charge carriers at the interfaces of the semiconductors. CdSe functions as a highly efficient visible light absorber and builds heterojunctions with the other components to improve the separation and transportation of the photoinduced electrons and holes. Cu(x)S serves as a passivation layer and an effective p-type hole mediator, which passivates the defects and surface states of the semiconductors and forms p-n junctions with CdSe to promote the hole transportation at the semiconductor-electrolyte interface. The nanoporous surface of the ZnO/ZnSe/CdSe/Cu(x)S core-shell nanowire arrays, together with the tunnel transportation of the charge carriers in the thin films of ZnSe and CdSe, also facilitates the kinetics of photoelectrochemical reactions and improves the optical absorption as well.

2.
ACS Appl Mater Interfaces ; 6(11): 8467-74, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24758144

ABSTRACT

ZnO/ZnS/CdS/CuInS2 core-shell nanowire arrays with enhanced photoelectrochemical activity under visible light were successfully prepared via ion exchange and hydrothermal methods. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis absorption, X-ray photoemission spectroscopy, and photoelectrochemical response. As a p-n junction photoanode, ZnO/ZnS/CdS/CuInS2 heterostructure shows much higher visible light photoelectrocatalytic activity toward water splitting than ZnO/ZnS/CdS and ZnO/ZnS films. The ZnO/ZnS/CdS/CuInS2 film with optimal constitution exhibits the highest photocurrent of 10.5 mA/cm(2) and the highest IPCE of approximately 57.7% at 480 nm and a bias potential of 0 V versus Ag/AgCl. The critical roles of CdS and ZnS in ZnO/ZnS/CdS/CuInS2 heterostructure were investigated. ZnS, as a passivation layer, suppresses the recombination of the photogenerated charge carriers at the interface of the oxide and CuInS2. CdS enhances the absorption of visible light and forms p-n junctions with CuInS2, which promotes the transport of charge carriers and retards the recombination of electrons and holes in CuInS2 to improve the photoelectrochemical performance of ZnO/ZnS/CdS/CuInS2 heterostructure.

SELECTION OF CITATIONS
SEARCH DETAIL
...