Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 89(5): 2816-2822, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28192971

ABSTRACT

Nickel manganese cobalt oxide (NMC) is a high energy capacity cathode material that attracts the interest of many research groups. Coating a protection layer on the NMC surface is one approach to improve its cycling and safety performance. However, there is no standard and consistent way to characterize the coating performance (thickness) of this protection layer, especially due to the nanoscale of primary particle and spherical morphology of the secondary particle. In this paper, a novel empirical method based on energy dispersive X-ray spectroscopy (EDX) analysis at low accelerating voltage is proposed to evaluate the protection layer thickness on the scale of tens of nanometers. The layer thickness is characterized by measuring the intensity decrease of a substrate element due to absorption by overlying coating layers. An internal standard coating (metal layer) is applied to mimic the morphology influence and improve the accuracy of thickness quantitation. For the model sample evaluation, carbon layer coatings of 1 to 10 nm thickness were successfully quantified by this method.

2.
Langmuir ; 26(24): 18893-901, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21090783

ABSTRACT

We report a templating effect of uniaxially oriented melt-drawn polyethylene (MD-PE) films on α-helical poly(L-lysine)/poly(styrenesulfonate) (α-PLL/PSS) complexes deposited by the layer-by-layer (LBL) method. The melt-drawing process induced an MD-PE fiber texture consisting of nanoscale lamellar crystals embedded in amorphous regions on the MD-PE film surface whereby the common crystallographic c axis is the PE molecular chain direction parallel to the uniaxial melt-drawing direction. The MD-PE film and the α-PLL/PSS deposit were analyzed by atomic force microscopy (AFM) and in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) using polarized light as a complementary method. Both methods revealed that α-PLL/PSS complexes adsorbed at the MD-PE surface were anisotropic and preferentially oriented perpendicular to the crystallographic c direction of the MD-PE film. Quantitatively, from AFM image analysis and ATR-FTIR dichroism of the amide II band of the α-PLL, mean cone opening angles of 12-18° for both rodlike α-PLL and the anisotropic α-PLL/PSS complexes with respect to the PE lamellae width direction were obtained. A model for the preferred alignment of α-PLL along the protruding PE lamellae is discussed, which is based on possible hydrophobic driving forces for the minimization of surface free energy at molecular and supermolecular topographic steps of the PE surface followed by electrostatic interactions between the interconnecting PSS and the α-PLL during layer-by-layer adsorption. This study elucidates the requirements and mechanisms involved in orienting biomolecules and may open up a path for designing templates to induce directed protein adsorption and cell growth by oriented polypeptide- or protein-modified PE surfaces.


Subject(s)
Molecular Conformation , Nanostructures/chemistry , Polyethylene/chemistry , Polylysine/chemistry , Crystallization , Models, Molecular , Polystyrenes/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties
3.
ACS Appl Mater Interfaces ; 1(12): 2878-85, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20356170

ABSTRACT

Chiral polyelectrolyte multilayers (PEMs) consisting of poly(l-lysine) (PLL), poly(N-(S)alkylated 4-vinylpyridinium iodide), or poly(ethyleneimine maltose) (PEI-m) as polycations and poly(styrenesulfonic acid) sodium salt (PSS) or poly(vinyl sulfate) as polyanions, as well as a nonchiral PEM composed of poly(ethyleneimine) (PEI) and PSS were deposited on silicon substrates and poly(tetrafluoroethylene) membranes using the layer-by-layer method. For these PEMs, enantiospecific interaction toward one enantiomer of either l/d-glutamic acid (l/d-GLU), l/d-tryptophan, or l/d-ascorbic acid (l/d-ASC), respectively, was studied under variation of the concentration, pH, and ionic strength. Both deposition and enantiospecific interaction were analyzed by attenuated total reflection Fourier transform infrared spectroscopy. Our results show a significant enantiospecific preference of d-GLU over l-GLU at PEMs containing PLL and of d-ASC over l-ASC at PEMs containing PEI-m. No such enantiospecific preference was found for nonchiral PEMs containing PEI. The enantiospecificity of PEMs of PLL/PSS toward l/d-GLU could be significantly influenced by the ionic strength and pH values, so that increasing attractive electrostatic interactions resulted in higher enantiospecificity.


Subject(s)
Ascorbic Acid/chemistry , Electrolytes/chemistry , Glutamic Acid/chemistry , Polymers/chemistry , Tryptophan/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Permeability , Polyelectrolytes , Polylysine/chemistry , Spectroscopy, Fourier Transform Infrared , Stereoisomerism , Sulfonic Acids
4.
Macromol Biosci ; 6(11): 929-41, 2006 Nov 09.
Article in English | MEDLINE | ID: mdl-17099866

ABSTRACT

The binding of the model proteins HSA, LYZ and MYO to PEC nanoparticles is reported. PEC particles were prepared by mixing solutions of PDADMAC either with PSS or PMA-MS, followed by consecutive centrifugation. Monomodal anionic (PEC-1.50) and cationic (PEC-0.66) PEC particles were obtained using non-stoichiometric mixing ratios. PEC/protein conjugates were prepared by adding charged protein solutions to dispersions of respective like charged PEC particles, followed by one centrifugation step. Mixing proteins and PEC particles under attractive conditions led to flocculation of the dispersion. From CD, DLS and AFM the following trend for protein binding at PEC particles under repulsive conditions was obtained: HSA/PEC-1.50 > MYO/PEC-1.50 > LYZ/PEC-0.66. Protein uptakes up to 0.33 g x g(-1) (protein/PEC) (CD) and particle diameter enlargements up to 13 nm (AFM) were obtained at c(PROT) = 0.091 mg . mL(-1). Furthermore, novel spin coated films of PEC particles were interacted with proteins under both repulsive and attractive conditions. In-situ ATR FT-IR spectroscopy revealed that the adsorbed amount of HSA and LYZ under attractive conditions was significantly higher than under repulsive ones, which is analogous to protein adsorption at polyelectrolyte multilayers terminated either by polycation or polyanion. Similarly to the dispersed PEC/protein conjugates, under repulsive conditions the uptake of HSA was higher compared to LYZ. The shown protein uptake under repulsive conditions is related to concepts of mild enzyme or protein binding at nonbiogenic substrates.


Subject(s)
Electrolytes/chemistry , Nanoparticles/chemistry , Polyethylenes/chemistry , Polymers/chemical synthesis , Proteins/metabolism , Quaternary Ammonium Compounds/chemistry , Sulfonic Acids/chemical synthesis , Circular Dichroism , Colloids/chemistry , Gravitation , Microscopy, Atomic Force , Molecular Structure , Polymers/chemistry , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Sulfonic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...