Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Int Immunopharmacol ; 136: 112330, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823180

ABSTRACT

An inflammatory response is one of the pathogeneses of depression. The anti-inflammatory and neuroprotective effects of auraptene have previously been confirmed. We established an inflammatory depression model by lipopolysaccharide (LPS) injection combined with unpredictable chronic mild stress (uCMS), aiming to explore the effects of auraptene on depressive-like behaviors in adult mice. Mice were divided into a control group, vehicle group, fluoxetine group, celecoxib group, and auraptene group. Then, behavioral tests were conducted to evaluate the effectiveness of auraptene in ameliorating depressive-like behavior. Cyclooxygenase-2 (COX-2), C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) were examined by ELISA. Interleukin-10 (IL-10), interleukin-4 (IL-4), and transforming growth factor-ß (TGF-ß) were examined by protein chip technology. The morphology of microglia was observed by the immunohistochemical method. The data showed that, compared with the control group, the vehicle group mice exhibited a depressive-like behavioral phenotype, accompanied by an imbalance in inflammatory cytokines and the activation of microglia in the hippocampus. The depressive behaviors of the auraptene group's mice were significantly alleviated, along with the decrease in pro-inflammatory factors and increase in anti-inflammatory factors, while the activation of microglia was inhibited in the hippocampus. Subsequently, we investigated the role of auraptene in vitro-cultured BV-2 cells treated with LPS. The analysis showed that auraptene downregulated the expression of IL-6, TNF-α, and NO, and diminished the ratio of CD86/CD206. The results showed that auraptene reduced the excessive phagocytosis and ROS production of LPS-induced BV2 cells. In conclusion, auraptene relieved depressive-like behaviors in mice probably via modulating hippocampal neuroinflammation mediated by microglia.

2.
World J Gastrointest Surg ; 16(4): 1121-1129, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38690046

ABSTRACT

BACKGROUND: Surgical site infection (SSI) is a common complication of colorectal surgery. Minimally invasive surgery notably reduces the incidence of SSI. This study aimed to compare the incidences of SSI after robot-assisted colorectal surgery (RACS) vs that after laparoscopic assisted colorectal surgery (LACS) and to analyze associated risk factors for SSI in minimally invasive colorectal surgery. AIM: To compare the incidences of SSI after RACS and LACS, and to analyze the risk factors associated with SSI after minimally invasive colorectal surgery. METHODS: Clinical data derived from patients who underwent minimally invasive colorectal surgery between October 2020 and October 2022 at the First Affiliated Hospital of Soochow University were collated. Differences in clinical characteristics and surgeryrelated information associated with RACS and LACS were compared, and possible risk factors for SSI were identified. RESULTS: A total of 246 patients (112 LACS and 134 RACS) were included in the study. Fortythree (17.5%) developed SSI. The proportions of patients who developed SSI were similar in the two groups (17.9% vs 17.2%, P = 0.887). Diabetes mellitus, intraoperative blood loss ≥ 100 mL, and incision length were independent risk factors for SSI. Possible additional risk factors included neoadjuvant therapy, lesion site, and operation time. CONCLUSION: There was no difference in SSI incidence in the RACS and LACS groups. Diabetes mellitus, intraoperative blood loss ≥ 100 mL, and incision length were independent risk factors for postoperative SSI.

3.
Comput Struct Biotechnol J ; 23: 2076-2082, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38803518

ABSTRACT

Since Epstein-Barr virus (EBV) was discovered in 1964, it has been reported to be associated with various malignancies as well as benign diseases, and the pathogenicity of EBV has been widely studied. Several databases have been established to provide comprehensive information on the virus and its relation to diseases and introduce convenient analysis tools. Although they have greatly facilitated the analysis of EBV at the genome, gene, protein, or epitope level, they did not provide enough insight into the genomic variants of EBV, which have been suggested as relevant to diseases by multiple studies. Here, we introduce dbEBV, a comprehensive database of EBV genomic variation landscape, which contains 942 EBV genomes with 109,893 variants from different tissues or cell lines in 24 countries. The database enables the visualization of information with varying global frequencies and their relationship with the human health of each variant. It also supports phylogenetic analysis at the genome or gene level in subgroups of different characteristics. Information of interest can easily be reached with functions such as searching, browsing, and filtering. In conclusion, dbEBV is a convenient resource for exploring EBV genomic variants, freely available at http://dbebv.omicsbio.info.

4.
Ind Eng Chem Res ; 63(19): 8819-8832, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765275

ABSTRACT

This study introduces a machine learning (ML)-assisted image segmentation method for automatic bubble identification in gas-solid quasi-2D fluidized beds, offering enhanced accuracy in bubble recognition. Binary images are segmented by the ML method, and an in-house Lagrangian tracking technique is developed to track bubble evolution. The ML-assisted segmentation method requires few training data, achieves an accuracy of 98.75%, and allows for filtering out common sources of uncertainty in hydrodynamics, such as varying illumination conditions and out-of-focus regions, thus providing an efficient tool to study bubbling in a standard, consistent, and repeatable manner. In this work, the ML-assisted methodology is tested in a particularly challenging case: structured oscillating fluidized beds, where the spatial and time evolution of the bubble position, velocity, and shape are characteristics of the nucleation-propagation-rupture cycle. The new method is validated across various operational conditions and particle sizes, demonstrating versatility and effectiveness. It shows the ability to capture challenging bubbling dynamics and subtle changes in velocity and size distributions observed in beds of varying particle size. New characteristic features of oscillating beds are identified, including the effect of frequency and particle size on the bubble morphology, aspect, and shape factors and their relationship with the stability of the flow, quantified through the rate of coalescence and splitting events. This type of combination of classic analysis with the application of the ML assisted techniques provides a powerful tool to improve standardization and address the reproducibility of hydrodynamic studies, with the potential to be extended from gas-solid fluidization to other multiphase flow systems.

5.
MedComm (2020) ; 5(4): e537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617434

ABSTRACT

Platinum resistance represents a major barrier to the survival of patients with ovarian cancer (OC). Cdc2-like kinase 2 (CLK2) is a major protein kinase associated with oncogenic phenotype and development in some solid tumors. However, the exact role and underlying mechanism of CLK2 in the progression of OC is currently unknown. Using microarray gene expression profiling and immunostaining on OC tissues, we found that CLK2 was upregulated in OC tissues and was associated with a short platinum-free interval in patients. Functional assays showed that CLK2 protected OC cells from platinum-induced apoptosis and allowed tumor xenografts to be more resistant to platinum. Mechanistically, CLK2 phosphorylated breast cancer gene 1 (BRCA1) at serine 1423 (Ser1423) to enhance DNA damage repair, resulting in platinum resistance in OC cells. Meanwhile, in OC cells treated with platinum, p38 stabilized CLK2 protein through phosphorylating at threonine 343 of CLK2. Consequently, the combination of CLK2 and poly ADP-ribose polymerase inhibitors achieved synergistic lethal effect to overcome platinum resistance in patient-derived xenografts, especially those with wild-type BRCA1. These findings provide evidence for a potential strategy to overcome platinum resistance in OC patients by targeting CLK2.

6.
Ying Yong Sheng Tai Xue Bao ; 35(2): 354-362, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523092

ABSTRACT

Forest fires have a significant impact on human life, property safety, and ecological environment. Deve-loping high-quality forest fire risk maps is beneficial for preventing forest fires, guiding resource allocation for firefighting, assisting in fire suppression efforts, and supporting decision-making. With a multi-criteria decision analysis (MCDA) method based on geographic information systems (GIS) and literature review, we assessed the main factors influencing the occurrences of forest fires in Youxi County, Fujian Province. We analyzed the importance of each fire risk factor using the analytic network process (ANP) and assigned weights, and evaluated the sub-standard weights using fuzzy logic assessment. Using ArcGIS aggregation functions, we generated a forest fire risk map and validated it with satellite fire points. The results showed that the areas classified as level 4 or higher fire risk accounted for a considerable proportion in Youxi County, and that the central and northern regions were at higher risk. The overall fire risk situation in the county was severe. The fuzzy ANP model demonstrated a high accuracy of 85.8%. The introduction of this novel MCDA method could effectively improve the accuracy of forest fire risk mapping at a small scale, providing a basis for early fire warning and the planning and allocation of firefighting resources.


Subject(s)
Fuzzy Logic , Wildfires , Humans , Fires/prevention & control , Forests , Geographic Information Systems , Trees , Wildfires/statistics & numerical data
7.
ACS Appl Mater Interfaces ; 16(14): 17285-17299, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38539044

ABSTRACT

Cytoprotective autophagy and an immunosuppressive tumor microenvironment (TME) are two positive promoters for tumor proliferation and metastasis that severely hinder therapeutic efficacy. Inhibiting autophagy and reconstructing TME toward macrophage activation simultaneously are of great promise for effective tumor elimination, yet are still a huge challenge. Herein, a kind of dendrimer-based proton sponge nanocomposites was designed and constructed for tumor chemo/chemodynamic/immunotherapy through autophagy inhibition-promoted cell apoptosis and macrophage repolarization-enhanced immune response. These obtained nanocomposites contain a proton sponge G5AcP dendrimer, a Fenton-like agent Cu(II), and chemical drug doxorubicin (DOX). When accumulated in tumor regions, G5AcP can act as an immunomodulator to realize deacidification-promoted macrophage repolarization toward antitumoral type, which then secretes inflammatory cytokines to activate T cells. They also regulate intracellular lysosomal pH to inhibit cytoprotective autophagy. The released Cu(II) and DOX can induce aggravated damage through a Fenton-like reaction and chemotherapeutic effect in this autophagy-inhibition condition. Tumor-associated antigens are released from these dying tumor cells to promote the maturity of dendritic cells, further activating T cells. Effective tumor elimination can be achieved by this dendrimer-based therapeutic strategy, providing significant guidance for the design of a promising antitumor nanomedicine.


Subject(s)
Dendrimers , Nanocomposites , Neoplasms , Humans , Protons , Cell Line, Tumor , Dendrimers/pharmacology , Neoplasms/drug therapy , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Autophagy , Immunity , Macrophages , Nanocomposites/therapeutic use , Apoptosis , Tumor Microenvironment
8.
Br J Cancer ; 130(5): 880-891, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233491

ABSTRACT

BACKGROUND: Many urothelial bladder carcinoma (UBC) patients don't respond to immune checkpoint blockade (ICB) therapy, possibly due to tumor-associated neutrophils (TANs) suppressing lymphocyte immune response. METHODS: We conducted a meta-analysis on the predictive value of neutrophil-lymphocyte ratio (NLR) in ICB response and investigated TANs' role in UBC. We used RNA-sequencing, HALO spatial analysis, single-cell RNA-sequencing, and flow cytometry to study the impacts of TANs and prostaglandin E2 (PGE2) on IDO1 expression. Animal experiments evaluated celecoxib's efficacy in targeting PGE2 synthesis. RESULTS: Our analysis showed that higher TAN infiltration predicted worse outcomes in UBC patients receiving ICB therapy. Our research revealed that TANs promote IDO1 expression in cancer cells, resulting in immunosuppression. We also found that PGE2 synthesized by COX-2 in neutrophils played a key role in upregulating IDO1 in cancer cells. Animal experiments showed that targeting PGE2 synthesis in neutrophils with celecoxib enhanced the efficacy of ICB treatment. CONCLUSIONS: TAN-secreted PGE2 upregulates IDO1, dampening T cell function in UBC. Celecoxib targeting of PGE2 synthesis represents a promising approach to enhance ICB efficacy in UBC.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Animals , Humans , Dinoprostone , Celecoxib/pharmacology , Neutrophils/pathology , Cyclooxygenase 2/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/metabolism , CD8-Positive T-Lymphocytes/pathology , RNA/metabolism
9.
Cell Death Differ ; 31(1): 78-89, 2024 01.
Article in English | MEDLINE | ID: mdl-38007552

ABSTRACT

Cervical cancer is the most common gynecologic cancer, etiologically related to persistent infection of human papillomavirus (HPV). Both the host innate immunity system and the invading HPV have developed sophisticated and effective mechanisms to counteract each other. As a central innate immune sensing signaling adaptor, stimulator of interferon genes (STING) plays a pivotal role in antiviral and antitumor immunity, while viral oncoproteins E7, especially from HPV16/18, are responsible for cell proliferation in cervical cancer, and can inhibit the activity of STING as reported. In this report, we find that activation of STING-TBK1 (TANK-binding kinase 1) promotes the ubiquitin-proteasome degradation of E7 oncoproteins to suppress cervical cancer growth. Mechanistically, TBK1 is able to phosphorylate HPV16/18 E7 oncoproteins at Ser71/Ser78, promoting the ubiquitination and degradation of E7 oncoproteins by E3 ligase HUWE1. Functionally, activated STING inhibits cervical cancer cell proliferation via down-regulating E7 oncoproteins in a TBK1-dependent manner and potentially synergizes with radiation to achieve better effects for antitumor. Furthermore, either genetically or pharmacologically activation of STING-TBK1 suppresses cervical cancer growth in mice, which is independent on its innate immune defense. In conclusion, our findings represent a new layer of the host innate immune defense against oncovirus and provide that activating STING/TBK1 could be a promising strategy to treat patients with HPV-positive cervical cancer.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Animals , Mice , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Uterine Cervical Neoplasms/pathology , Human papillomavirus 18/metabolism , Oncogene Proteins, Viral/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Plant Physiol ; 194(2): 1041-1058, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37772952

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Plant Stomata/metabolism , Arabidopsis/metabolism , Voltage-Dependent Anion Channels/metabolism , Mitochondria/metabolism
11.
Chemistry ; 30(12): e202303615, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38135658

ABSTRACT

Development of one dimensional covalent organic frameworks (1D-COFs) with potential in light absorption and catalysis is still challenging, due to their rapid interpenetration to form 2D and 3D porous structures. Here we report a successful synthesis of imine-linked 1D covalent organic ribbons (COR), using two simple linear building blocks 1,4-Benzenediamine (Bda) and [2,2'-Bipyridine]-5,5'-dicarbaldehyde (Bpy). The obtained 1D structure with nanorod morphology could keep its physicochemical characteristic properties when it is perpendicular to the surface of graphene oxide (GO) sheets (1D-p-2D structure). Due to an AB π- π stacking and efficient charge transfer between perpendicular 1D COR and GO sheets, the obtained nanocomposite showed strong visible light absorbance (400-700 nm) with coefficient of 4.400 M-1 cm-1 and decreased recombination rate of photogenerated reactive species by 92 %. The strategy of 1D-p-2D light driven system greatly enhanced the photocatalytic activity in practical applications such as both oxidation and hydrogenation tandem reactions to a rate constant of higher than 0.02 min-1 . This study presents the first case of 1D covalent organic polymers grown perpendicularly on a carbon-based layer for boosting electron mobility through the junction between the two components.

12.
Cerebellum ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019418

ABSTRACT

Numerous studies have demonstrated the potential of non-invasive brain stimulation (NIBS) techniques as a viable treatment option for cerebellar ataxia. However, there is a notable dearth of research investigating the efficacy of NIBS specifically for hereditary ataxia (HA), a distinct subgroup within the broader category of cerebellar ataxia. This study aims to conduct a comprehensive systematic review and meta-analysis in order to assess the efficacy of various NIBS methods for the treatment of HA. A thorough review of the literature was conducted, encompassing both English and Chinese articles, across eight electrical databases. The focus was on original articles investigating the therapeutic effectiveness of non-invasive brain stimulation for hereditary ataxia, with a publication date prior to March 2023. Subsequently, a meta-analysis was performed specifically on randomized controlled trials (RCTs) that fulfilled the eligibility criteria, taking into account the various modalities of non-invasive brain stimulation. A meta-analysis was conducted, comprising five RCTs, which utilized the Scale for the Assessment and Rating of Ataxia (SARA) as the outcome measure to evaluate the effects of transcranial magnetic stimulation (TMS). The findings revealed a statistically significant mean decrease of 1.77 in the total SARA score following repetitive TMS (rTMS) (p=0.006). Subgroup analysis based on frequency demonstrated a mean decrease of 1.61 in the total SARA score after high-frequency rTMS (p=0.05), while no improvement effects were observed after low-frequency rTMS (p=0.48). Another meta-analysis was performed on three studies, utilizing ICARS scores, to assess the impact of rTMS. The results indicated that there were no statistically significant differences in pooled ICARS scores between the rTMS group and the sham group (MD=0.51, 95%CI: -5.38 to 6.39; p=0.87). These findings align with the pooled results of two studies that evaluated alterations in post-intervention BBS scores (MD=0.74, 95%CI: -5.48 to 6.95; p=0.82). Despite the limited number of studies available, this systematic review and meta-analysis have revealed promising potential benefits of rTMS for hereditary ataxia. However, it is strongly recommended that further high-quality investigations be conducted in this area. Furthermore, the significance of standardized protocols for NIBS in future studies was also emphasized.

13.
Cancer Res ; 83(24): 4030-4046, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37768887

ABSTRACT

FGFR3 alterations are common in patients with bladder cancer. While the FGFR tyrosine kinase inhibitor erdafitinib has been approved as a targeted therapy for patients with FGFR3-altered (aFGFR3) bladder cancer, the response rate remains suboptimal, prompting development of strategies to improve treatment response. Here, we observed an immune-desert tumor microenvironment (TME) phenotype in human aFGFR3 bladder cancer and demonstrated that mutant FGFR3 indirectly induces a "cold" TME in mouse bladder cancer models. Single-cell RNA sequencing revealed the central role of macrophages in inducing the cold TME of aFGFR3 tumors. Macrophages in aFGFR3 tumors exhibited reduced T-cell recruitment and antigen presentation capabilities. Increased serine synthesis in bladder cancer cells that was induced by mutant FGFR3 activated the PI3K/Akt pathway in macrophages, shifting them to an immune-inert phenotype. Targeting PI3K in aFGFR3 tumors with duvelisib achieved promising efficacy by reversing the macrophage phenotype, and combination therapy with duvelisib and erdafitinib demonstrated increased antitumor activity. Overall, these findings reveal the critical role of enhanced serine synthesis efflux from cancer cells with mutant FGFR3 in shifting macrophages to an immune-inert phenotype. Reversing the macrophage phenotype holds promise for enhancing erdafitinib efficacy. SIGNIFICANCE: Metabolic reprogramming of bladder cancer cells driven by mutant FGFR3 increases serine synthesis that suppresses macrophage immunostimulatory functions to generate an immunosuppressive TME, which can be overcome by targeting PI3K.


Subject(s)
Phosphatidylinositol 3-Kinases , Urinary Bladder Neoplasms , Animals , Mice , Humans , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/physiology , T-Lymphocytes/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Receptor, Fibroblast Growth Factor, Type 3 , Macrophages/metabolism , Tumor Microenvironment
14.
ACS Appl Mater Interfaces ; 15(36): 42317-42328, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37640060

ABSTRACT

Elimination of tumor cells using carbonate nanomaterials with tumor microenvironment-responsive capacity has been explored as an effective strategy. However, their therapeutic outcomes are always compromised by the relatively low intratumoral accumulation and limited synthesis method. Herein, a novel kind of basic copper carbonate nanosheets was designed and prepared using a green synthesis method for photoacoustic imaging-guided tumor apoptosis and ferroptosis therapy. These nanosheets were synthesized with the assistance of dopamine and ammonium bicarbonate (NH4HCO3) and the loading of glucose oxidase (GOx). NH4HCO3 could not only provide an alkaline environment for the polymerization of dopamine but also supply carbonates for the growth of nanosheets. The formed nanosheets displayed good acid and near-infrared light responsiveness. After intercellular uptake, they could be degraded to release Cu2+ and GOx, generating hydroxyl radicals through a Cu+-mediated Fenton-like reaction, consuming glucose, up-regulating H2O2 levels, and down-regulating GSH levels. Tumor elimination could be achieved by hydroxyl radical-induced apoptosis and ferroptosis. More amusingly, this synthesis method can be extended to several kinds of mono-element and multi-element carbonate nanomaterials (e.g., Fe, Mn, and Co), showing great potential for further tumor theranostics.


Subject(s)
Ferroptosis , Neoplasms , Photoacoustic Techniques , Humans , Copper , Dopamine , Hydrogen Peroxide , Apoptosis , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Glucose Oxidase , Hydroxyl Radical , Tumor Microenvironment
15.
J Neurol Sci ; 452: 120739, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37536055

ABSTRACT

Alien hand syndrome (AHS) is a rare apraxia syndrome, characterized by involuntary and uncontrollable movements of one upper limb, often accompanied by intermanual conflict. Damage to the corpus callosum, acute infarction and neurodegenerative disease may result in AHS. Based on the presentation and impairment region, AHS has three variants: frontal, callosal and posterior. Each type may have a different clinical presentation. A total of 157 patients admitted to hospital with corpus callosum infarction between 2012 and 2022 were included for this study, of whom a number of 5 presented with AHS. 4 of them had significant symptoms of intermanual conflict and 1 had strong grip symptoms in the affected upper limb. Moreover, new infarcts involving the corpus callosum and cingulate gyrus were found on MRI in all five patients. We simultaneously performed a retrospective study on all reported AHS cases caused by infarction of the corpus callosum. Case reports and literature reviews were conducted in order to provide clinicians with a better understanding of AHS, its etiology, clinical presentation, diagnosis, and treatment.


Subject(s)
Alien Limb Phenomenon , Neurodegenerative Diseases , Humans , Corpus Callosum/diagnostic imaging , Alien Limb Phenomenon/diagnostic imaging , Alien Limb Phenomenon/etiology , Neurodegenerative Diseases/complications , Retrospective Studies , Cerebral Infarction/complications , Cerebral Infarction/diagnostic imaging , Magnetic Resonance Imaging , Hand
16.
J Hazard Mater ; 458: 131986, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37413797

ABSTRACT

Polyethylene (PE) and industrial dyes are recalcitrant pollutants calling for the development of sustainable solutions for their degradation. Laccases have been explored for removal of contaminants and pollutants, including dye decolorization and plastic degradation. Here, a novel thermophilic laccase from PE-degrading Lysinibaccillus fusiformis (LfLAC3) was identified through a computer-aided and activity-based screening. Biochemical studies of LfLAC3 indicated its high robustness and catalytic promiscuity. Dye decolorization experiments showed that LfLAC3 was able to degrade all the tested dyes with decolorization percentage from 39% to 70% without the use of a mediator. LfLAC3 was also demonstrated to degrade low-density polyethylene (LDPE) films after eight weeks of incubation with either crude cell lysate or purified enzyme. The formation of a variety of functional groups was detected using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Damage on the surfaces of PE films was observed via scanning electron microscopy (SEM). The potential catalytic mechanism of LfLAC3 was disclosed by structure and substrate-binding modes analysis. These findings demonstrated that LfLAC3 is a promiscuous enzyme that has promising potential for dye decolorization and PE degradation.


Subject(s)
Environmental Pollutants , Polyethylene , Laccase/metabolism , Coloring Agents/chemistry , Hydrolases
17.
ACS Appl Mater Interfaces ; 15(27): 32329-32340, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37366269

ABSTRACT

Although the engineering of visible-light-driven photocatalysts with appropriate bandgap structures is beneficial for generating hydrogen (H2), the construction of heterojunctions and energy band matching are extremely challenging. In this study, In2O3@Ni2P (IO@NP) heterojunctions are attained by annealing MIL-68(In) and combining the resulting material with NP via a simple hydrothermal method. Visible-light photocatalysis experiments validate that the optimized IO@NP heterojunction exhibits a dramatically improved H2 release rate of 2485.5 µmol g-1 h-1 of 92.4 times higher than that of IO. Optical characterization reveals that the doping of IO with an NP component promotes the rapid separation of photo-induced carriers and enables the capture of visible light. Moreover, the interfacial effects of the IO@NP heterojunction and synergistic interaction between IO and NP that arises through their close contact mean that plentiful active centers are available to reactants. Notably, eosin Y (EY) acts as a sacrificial photosensitizer and has a significant effect on the rate of H2 generation under visible light irradiation, which is an aspect that needs further improvement. Overall, this study describes a feasible approach for synthesizing promising IO-based heterojunctions for use in practical photocatalysis.

19.
J Colloid Interface Sci ; 644: 346-357, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37120883

ABSTRACT

Photocatalyst systems generally consist of catalysts and cocatalysts to realize light capture, charge carrier migration, and surface redox reactions. Developing a single photocatalyst that performs all functions while minimizing efficiency loss is extremely challenging. Herein, rod-shaped photocatalysts Co3O4/CoO/Co2P are designed and prepared using Co-MOF-74 as a template, which displays an outstanding H2 generation rate of 6.00 mmol·g-1·h-1 when exposed to visible light irradiation. It is 12.8 times higher than pure Co3O4. Under light excitation, the photoinduced electrons migrate from the catalysts of Co3O4 and CoO to the cocatalyst Co2P. The trapped electrons can subsequently undergo a reduction reaction to produce H2 on the surface. Density functional theory calculations and spectroscopic measurements reveal that enhanced performance results from the extended lifetime of photogenerated carriers and higher charge transfer efficiency. The ingenious structure and interface design presented in this study may guide the general synthesis of metal oxide/metal phosphide homometallic composites for photocatalysis.

20.
J Cancer Res Clin Oncol ; 149(9): 5999-6007, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36624190

ABSTRACT

OBJECTIVE: To develop a risk stratification model based on the International Federation of Gynecology and Obstetrics (FIGO) staging combined with squamous cell carcinoma antigen (SCC-Ag) for the classification of patients with cervical squamous cell carcinoma (CSCC) into different risk groups. METHODS: We retrospectively reviewed the data of 664 women with stage IIA-IVB CSCC according to the 2018 FIGO staging system who received definitive radiotherapy from March 2013 to December 2017 at the department of radiation oncology of Sun Yat-sen University Cancer Center. Cutoff values for continuous variables were estimated using receiver operating characteristic curve analysis. Using recursive partitioning analysis (RPA) modeling, overall survival was predicted based on the prognostic factors determined via Cox regression analysis. The predictive performance of the RPA model was assessed using the consistency index (C-index). Intergroup survival differences were determined and compared using Kaplan-Meier analysis and the log-rank test. RESULTS: Multivariate Cox regression analysis identified post-treatment SCC-Ag (< 1.35 ng/mL and > 1.35 ng/mL; hazard ratio (HR), 4.000; 95% confidence interval (CI), 2.911-5.496; P < 0.0001) and FIGO stage (II, III, and IV; HR, 2.582, 95% CI, 1.947-3.426; P < 0.0001) as the independent outcome predictors for overall survival. The RPA model based on the above prognostic factors divided the patients into high-, intermediate-, and low-risk groups. Significant differences in overall survival were observed among the three groups (5-year overall survival: low vs. intermediate vs. high, 91.3% vs. 76.7% vs. 29.5%, P < 0.0001). The predictive performance of the RPA model (C-index, 0.732; 95% CI, 0.701-0.763) was prominently superior to that of post-treatment SCC-Ag (C-index, 0.668; 95% CI, 0.635-0.702; P < 0.0001) and FIGO stage (C-index, 0.663; 95% CI, 0.631-0.695; P < 0.0001). CONCLUSIONS: The RPA model based on FIGO staging and post-treatment SCC-Ag can predict the overall survival of patients with CSCC, thereby providing a guide for the formulation of risk-adaptive treatment and individualized follow-up strategies.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Neoplasm Staging , Retrospective Studies , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/pathology , Risk Assessment , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...