Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
DNA Cell Biol ; 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30277813

ABSTRACT

DNA methylation epigenetically regulates gene expression. This study is aimed to investigate genome-wide DNA methylations involved in the regulation of palatal fusion in the all-trans retinoic acid-induced mouse cleft palate model. There were 4,718,556 differentially CCGG methylated sites and 367,504 CCWGG methylated sites for 1497 genes between case and control embryonic mouse palatal tissues. The enhancers (HDAC4 and SMAD3) and promoter (MID1) of these three genes had cis-acting element methylation. HDAC4 is localized within the CCWGG, while MID1 and SMAD3 are localized within the CCGG of the gene intron. The methylation-specific polymerase chain reaction data confirmed the MethylRAD-seq results, while the quantitative reverse transcriptase-polymerase chain reaction result showed that changes in gene expression inversely were associated with the cis-acting element methylation of the gene during retinoic acid-induced palatal fusion. The GO and KEGG data showed that these three genes could regulate cell proliferation, skeletal muscle fiber development, and development-related gene signaling or activity. The cis-acting element methylation of HDAC4, SMAD3, and MID1 may play a regulatory role during palatal fusion. Further research is needed to verify these novel epigenetic biomarkers for cleft palate.

2.
Chin Med J (Engl) ; 131(16): 1964-1968, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30082528

ABSTRACT

BACKGROUND: Previous studies demonstrate that eccrine sweat glands are innervated by both cholinergic and adrenergic nerves. However, it is still unknown whether the secretory coils and ducts of eccrine sweat glands are equally innervated by the sympathetic nerve fibers. To well understand the mechanisms on sweat secretion and reabsorption, the differential innervation of secretory coils and ducts in human eccrine sweat glands was investigated in the study. METHODS: From June 2016 to June 2017, six human skins were fixed, paraffin-embedded, and cut into 5 µm-thick sections, followed by costaining for nerve fiber markers protein gene product 9.5 (PGP 9.5), tyrosine hydroxylase (TH) and vasoactive intestinal peptide (VIP), and eccrine sweat gland markers K7, S100P, and K14 by combining standard immunofluorescence with tyramide signal amplification (IF-TSA). Stained sections were observed under the microscope, photographed, and analyzed. RESULTS: The fluorescent signals of PGP 9.5, TH, and VIP were easily visualized, by IF-TSA, as circular patterns surrounding eccrine sweat glands, but only PGP 9.5 could be observed by standard IF. The IF-TSA method is more sensitivity than standard IF in detecting antigens expressed at low levels. PGP 9.5, TH, and VIP appeared primarily surrounding the secretory coils and sparsely surrounding the sweat ducts. CONCLUSION: Sweat secretion is mainly controlled by autonomic nerves whereas sweat reabsorption is less affected by nerve activity.


Subject(s)
Eccrine Glands/innervation , Nerve Fibers , Sweat Glands/innervation , Fluorescent Antibody Technique , Humans , Vasoactive Intestinal Peptide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...