Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 6: 667, 2018.
Article in English | MEDLINE | ID: mdl-30705881

ABSTRACT

In this work a novel, relatively simple, and fast method for patterning of gold nanoparticles (Au NPs) on poly(ethylene glycol) (PEG)-based hydrogels is presented. In the hereby exploited reactive micro-contact printing (reactive-µ-CP) process, the surface of a micro-relief patterned PDMS-stamp is first functionalized with an amino-silane self-assembled monolayer (SAM), which is then inked with Au NPs. The stamp is subsequently brought into conformal contact with thiol-functionalized PEG-based hydrogel films. Due to the strong gold-thiol interactions the Au NPs are adequately and easily transferred onto the surfaces of these soft, multifunctional PEG hydrogels. In this way, defined µ-patterns of Au NPs on PEG hydrogels are achieved. These Au NPs patterns allow specific biomolecular interactions on PEG surfaces, and cell adhesion has been studied. Cells were found to effectively adhere only on Au NPs micro-patterns and to avoid the anti-adhesive PEG background. Besides the cell adhesion studies, these Au NPs µ-patterns can be potentially applied as biosensors in plasmon-based spectroscopic devices or in medicine, e.g., for drug delivery systems or photothermal therapies.

2.
Chembiochem ; 18(1): 85-90, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27862817

ABSTRACT

The noncanonical amino acid S-allyl cysteine (Sac) is one of the major compounds of garlic extract and exhibits a range of biological activities. It is also a small bioorthogonal alkene tag capable of undergoing controlled chemical modifications, such as photoinduced thiol-ene coupling or Pd-mediated deprotection. Its small size guarantees minimal interference with protein structure and function. Here, we report a simple protocol efficiently to couple in-situ semisynthetic biosynthesis of Sac and its incorporation into proteins in response to amber (UAG) stop codons. We exploited the exceptional malleability of pyrrolysyl-tRNA synthetase (PylRS) and evolved an S-allylcysteinyl-tRNA synthetase (SacRS) capable of specifically accepting the small, polar amino acid instead of its long and bulky aliphatic natural substrate. We succeeded in generating a novel and inexpensive strategy for the incorporation of a functionally versatile amino acid. This will help in the conversion of orthogonal translation from a standard technique in academic research to industrial biotechnology.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Cysteine/analogs & derivatives , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Binding Sites , Cysteine/chemistry , Cysteine/metabolism , Cysteine Synthase/metabolism , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Methanosarcina/enzymology , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Structure, Tertiary
3.
J Mater Chem B ; 3(12): 2487-2496, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-32262123

ABSTRACT

Graphene quantum dots (GQDs) have become increasingly important for applications in energy materials, optical devices and biosensors. Here we report a facile technique to fabricate a nanofibrous membrane of GQDs by electrospinning water-soluble GQDs with polyvinyl alcohol (PVA) directly. The structure and fluorescence properties of the fabricated PVA/GQD nanofibrous membrane were investigated using scanning and transmission electron microscopy, and fluorescence microscopy. It was found that the electrospun PVA/GQD nanofibrous membrane has a three-dimensional structure with a high surface area to volume ratio, which is beneficial for the adsorption of electrolytes and the diffusion of reactants. For the first time, the created PVA/GQD nanofibrous membrane was utilized to fabricate dual-purpose fluorescent and electrochemical biosensors for highly sensitive determination of hydrogen peroxide (H2O2) and glucose. The experimental results indicated that the fluorescence intensity of the nanofibrous membrane decreased linearly with increasing H2O2 concentration, because the addition of H2O2 leads to fluorescence quenching of the GQDs, which endows the fabricated nanofibrous membrane with fluorescence activity. Besides, after binding glucose oxidase onto the created nanofibrous membrane, the fabricated nanofibrous membrane showed high sensitivity and selectivity for glucose detection. In addition, the PVA/GQD nanofibrous membrane can also be directly electrospun onto an electrode for electrochemical detection of H2O2. This novel nanofibrous membrane exhibits excellent catalytic performance and fluorescence activity, and therefore has potential applications for the highly stable, sensitive, and selective detection of H2O2 and glucose.

4.
ACS Appl Mater Interfaces ; 6(6): 4254-63, 2014 Mar 26.
Article in English | MEDLINE | ID: mdl-24588055

ABSTRACT

We report a facile in situ synthesis of reduced graphene oxide (RGO)-phenol formaldehyde (PF) composites with an interactive oxidation-reduction reaction. In this interactive chemical reaction, graphene oxide (GO) was reduced to RGO by phenol, and simultaneously phenol was oxidized to benzoquinone. The noncovalently adsorbed phenol on the RGO surface can not only serve as an effective reductant but also participate in the in situ polymerization and guide the formation of PF on the RGO surface. RGO-PF composites with different RGO contents were prepared successfully and further characterized with fluorescent spectroscopy, scanning electron microscopy, and transmission electron microscopy. The mechanical strength, electrical conductivity, thermal conductivity, and thermal resistance of the created RGO-PF were investigated. The results indicated that the dispersity of RGO in the PF matrix and the interfacial interaction between RGO and PF were improved greatly because of formation of the RGO-PF hybrid in the in situ synthesis. The homogeneous dispersion and in situ polymerization of RGO sheets help to enhance the thermal conductivity of RGO-PF composites from 0.1477 to 0.3769 W m(-1) K(-1) and endow the composites with a good electrical conductivity. In addition, the well-dispersed RGO-PF composites are much more effective in improving their mechanical property and heat resistance.

5.
J Mater Chem B ; 1(18): 2415-2424, 2013 May 14.
Article in English | MEDLINE | ID: mdl-32261076

ABSTRACT

We reported here the electrospinning preparation of polyurethane nanofibers filled with carbon nanotubes and silver nanoparticles (PU-MWCNT-AgNP) and the subsequent fabrication of a novel non-enzymatic amperometric biosensor for analytical determination of hydrogen peroxide. The morphologies of the as-spun PU-MWCNT-AgNP hybrid nanofibers were observed by scanning and transmission electron microscopy. The interaction between MWCNTs and AgNPs in the electrospun nanofibers was studied by differential scanning calorimetry and dynamic mechanical analysis. The cyclic voltammetry experiments indicate that PU-MWCNT-AgNP nanofiber modified electrodes have high electrocatalytic activity on hydrogen peroxide, and the chronoamperometry measurements illustrate that this electrospun sensor has high sensitivity for detecting hydrogen peroxide. Our study further confirms the remarkable synergistic effect of MWCNTs and AgNPs on the significant improvement of the conductivity of electrospun nanofibers and the electrocatalytic activity, as well as the sensitivity of the fabricated non-enzymatic sensor. Under an optimal experimental condition, the created biosensor for detecting hydrogen peroxide has a sensitivity of 160.6 µA mM-1 cm-2, a wide linear range from 0.5 to 30 mM and a detection limit of 18.6 µM (S/N = 3), which indicates that this novel and simple strategy for fabricating electrochemical sensor by an electrospinning technique has wide potential applications in bio-analysis and detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...