Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(17): 5960-5967, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33949504

ABSTRACT

Two ion-pair Fe(iii) complexes (PPh4)[FeIII(HATD)2]·2H2O (1, H3ATD = azotetrazolyl-2,7-dihydroxynaphthalene) and [FeII(phen)3][FeIII(HATD)2]2·3DMA·3.5H2O (2, phen = 1,10-phenanthroline, DMA = N,N-dimethylformamide) were synthesized by employing the tridentate ligand H3ATD. Crystal structure analyses reveal that complexes 1 and 2 consist of FeIII ions in an octahedral environment where a FeIII ion is coordinated by two HATD2- ligands forming the [FeIII(HATD)2]- core. The shortest cationanion distance between the phosphorus ion of the (PPh4)+ cation and the ferric ion of the [FeIII(HATD)2]- anion is 13.190 Å in complex 1, whereas that between the ferrous ion of the [FeII(Phen)3]2+ cation and the ferric ion of the [FeIII(HATD)2]- anion is 7.821 Å in complex 2. C-HC and C-HO hydrogen interactions between the [FeII(phen)3]2+ cation and the [FeIII(HATD)2]- anion are observed in 2. Face-to-face π-π stacking interactions between naphthalene rings with the separated interplanar center to center distances of 3.421-3.680 Å were observed, which result in a one-dimensional supramolecular chain in complexes 1 and 2. Magnetic measurements show that complex 1 is in the low-spin (LS) state below 500 K, whereas 2 undergoes a high temperature spin crossover (SCO) between 360 and 500 K. Magneto-structural relationship studies reveal that π-stacking, hydrogen interactions and Coulomb interactions between the [FeIII(HATD)2]- anion and the [FeII(phen)3]2+ cation play a crucial role in the high temperature Fe(iii) SCO behaviour of complex 2.

2.
Dalton Trans ; 49(46): 17017-17025, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33191419

ABSTRACT

By employing the ligand azotetrazolyl-2,7-dihydroxynaphthalene (H3ATD), two linear trinuclear mixed-valence cobalt complexes [CoIICoIII2(HATD)4(H2O)4]·4DMA·3H2O (1, DMA = N,N-dimethylacetamide) and [CoIICoIII2(HATD)4(DMF)2(H2O)2]·2DMF·2H2O (2, DMF = N,N-dimethylformamide) were synthesized. Two [2 × 2] grid-like tetranuclear ion-pair complexes [CoII2CoIII2(HATD)4(bpp)2(H2O)2][CoIII(HATD)2]2·8DMF·6H2O (3, bpp = 2,6-di(pyrazol-1-yl)pyridine) and [CoII2CoIII2(HATD)4(bpp)2(H2O)2][CoIII(HATD)2]2·8DMSO·4MeOH (4, DMSO = dimethyl sulphoxide) were obtained by the reaction of complex 1/2 with tridentate-chelating bpp in DMF and DMSO, respectively. The single-crystal X-ray diffraction analysis indicated that complexes 1 and 2 have a similar core, in which the DMA in 1 acts as a guest molecule, and the DMF in 2 acts as a coordinated molecule and guest molecule. Complexes 3 and 4 are isostructural. All the Co(ii) ions in 1-4 are present in a distorted octahedral geometry. The ac susceptibility measurements show that all complexes display frequency-dependent peaks in the out-of-phase (χm'') component of the alternating-current (ac) magnetic susceptibility data, which is the characteristic behavior of single molecule magnets (SMMs).

3.
Inorg Chem ; 59(7): 4414-4423, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32191444

ABSTRACT

The unique electronic configurations of lanthanide(III) ions generate abundant electronic energy levels, resulting in the fantastic magnetic and optical multifunctional properties of lanthanide complexes. Here, 2-hydroxy-3-methoxybenzoic acid (H2MBA) was used to construct four Dy(III) and Tb(III) complexes containing two isostructural dinuclear complexes of [Ln2(HMBA)2(MBA)2(DMF)2(H2O)2]·6H2O [Ln = Dy (1), Tb (2); DMF = N,N-dimethylformamide] and two other isostructural beltlike one-dimensional-chain complexes of [NH4][Ln(HMBA)4] [Ln = Dy (3), Tb (4)]. Fluorescence measurements reveal that H2MBA can sensitize Dy(III) and Tb(III) characteristic luminescence. Furthermore, complex 3 can emit white light under UV-light irradiation originating from a dichromatic mixture of a blue emission of H2MBA and a dominating yellow emission of Dy3+ ions. Magnetic susceptibility measurements show that two Dy(III) complexes are single-molecule magnets with anisotropy barriers of 90(2) and 31(5) cm-1 for 1 and 3, respectively. The magnet-luminescence-structure correlations as well as relaxation pathways are investigated by ab initio calculations and fluorescent spectrometry.

4.
Chem Commun (Camb) ; 56(17): 2590-2593, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32016195

ABSTRACT

One-dimensional zig-zag chain and two-dimensional network dysprosium(iii) single-molecule toroics with anisotropy barriers of about 5 and 31 cm-1 under a zero dc field are reported. These are the first one- and two- dimensional homometallic single-molecule toroics reported to date. Furthermore, the two complexes also display white-light emission under UV-light irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...