Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 11: 583, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20959002

ABSTRACT

BACKGROUND: Two year cancer bioassays conducted by the National Toxicology Program have shown chronic exposure to dioxin-like compounds (DLCs) to lead to the development of both neoplastic and non-neoplastic lesions in the hepatic tissue of female Sprague Dawley rats. Most, if not all, of the hepatotoxic effects induced by DLC's are believed to involve the binding and activation of the transcription factor, the aryl hydrocarbon receptor (AhR). Toxicogenomics was implemented to identify genomic responses that may be contributing to the development of hepatotoxicity in rats. RESULTS: Through comparative analysis of time-course microarray data, unique hepatic gene expression signatures were identified for the DLCs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (100 ng/kg/day) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) (1000 ng/kg/day) and the non-DLC 2,2',4,4',5,5',-hexachlorobiphenyl (PCB153) (1000 µg/kg/day). A common time independent signature of 41 AhR genomic biomarkers was identified which exhibited at least a 2-fold change in expression following subchronic (13-wk) and chronic (52-wk) p.o. exposure to TCDD and PCB126, but not the non DLC, PCB153. Real time qPCR analysis validated that 30 of these genes also exhibited at least a 2-fold change in hepatic expression at 24 hr following a single exposure to TCDD (5 µg/kg, po). Phenotypic anchoring was conducted which identified forty-six genes that were differently expressed both following chronic p.o. exposure to DLCs and in previously reported studies of cholangiocarcinoma or hepatocellular adenoma. CONCLUSIONS: Together these analyses provide a comprehensive description of the genomic responses which occur in rat hepatic tissue with exposure to AhR ligands and will help to isolate those genomic responses which are contributing to the hepatotoxicity observed with exposure to DLCs. In addition, the time independent gene expression signature of the AhR ligands may assist in identifying other agents with the potential to elicit dioxin-like hepatotoxic responses.


Subject(s)
Environmental Exposure/analysis , Genome/genetics , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Toxicogenetics/methods , Animals , Biomarkers/metabolism , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Ligands , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Phenotype , Rats , Rats, Sprague-Dawley
2.
Toxicol Sci ; 94(2): 428-38, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16984957

ABSTRACT

Chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to lead to the development of hepatotoxicity and carcinogenicity in the liver of female rats. In this study, we investigated hepatic gene downregulation in response to acute and subchronic TCDD exposure. We identified 61 probes which exhibited a downregulation of twofold or greater following subchronic (13 weeks) exposure to TCDD. Comparative analysis of the hepatic expression of these 61 probes was conducted with rats subchronically exposed to PeCDF, PCB126, PCB153, and a mixture of PCB126 and PCB153. PCB153 produced little or no alteration in these probes, while the binary mixture mimicked most closely the downregulation observed with TCDD. To discern if the repression of genes within this probe set occur as a primary response to TCDD exposure, we analyzed the early responsiveness of 11 genes at 6, 24, and 72 h following a single exposure to TCDD. We observed early repression of the 11 genes within this early time course, indicating that the repression of this subset of genes occurs as a primary response to TCDD exposure and not as a secondary response to 13 weeks of subchronic treatment. In addition, the gender, species, and AhR dependence of these responses were also investigated. Gender- and species-dependent repression was observed within this subset of genes. Furthermore, utilizing AhR knockout mice, we were able to determine the AhR-dependent downregulation of seven of 11 genes. Together these results assist efforts to understand the multitude of effects imposed by TCDD and AhR ligands on gene expression.


Subject(s)
Down-Regulation/drug effects , Environmental Pollutants/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Liver/drug effects , Polychlorinated Dibenzodioxins/toxicity , Animals , Female , Gene Expression Profiling , Liver/metabolism , Male , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Polychlorinated Biphenyls/toxicity , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...