Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Phys Rev Lett ; 110(6): 065007, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23432266

ABSTRACT

We report on a numerical study of the effects of preplasma scale length and laser intensity on the hot-electron (≥1 MeV) divergence angle using full-scale 2D3V (two dimensional in space, three dimensional in velocity) simulations including a self-consistent laser-plasma interaction and photoionization using the particle-in-cell code LSP. Our simulations show that the fast-electron divergence angle increases approximately linearly with the preplasma scale length for a fixed laser intensity. On the other hand, for a fixed preplasma scale length, the laser intensity has little effect on the divergence angle in the range between 10(18) and 10(21) W/cm(2). These findings have important implications for the interpretation of experimental results.

2.
Phys Rev Lett ; 104(5): 055002, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20366771

ABSTRACT

The viability of fast-ignition (FI) inertial confinement fusion hinges on the efficient transfer of laser energy to the compressed fuel via multi-MeV electrons. Preformed plasma due to the laser prepulse strongly influences ultraintense laser plasma interactions and hot electron generation in the hollow cone of an FI target. We induced a prepulse and consequent preplasma in copper cone targets and measured the energy deposition zone of the main pulse by imaging the emitted K_{alpha} radiation. Simulation of the radiation hydrodynamics of the preplasma and particle in cell modeling of the main pulse interaction agree well with the measured deposition zones and provide an insight into the energy deposition mechanism and electron distribution. It was demonstrated that a under these conditions a 100 mJ prepulse eliminates the forward going component of approximately 2-4 MeV electrons.

3.
Rev Sci Instrum ; 79(10): 10F302, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044615

ABSTRACT

The ignition concept for electron fast ignition inertial confinement fusion requires sufficient energy be transferred from an approximately 20 ps laser pulse to the compressed fuel via approximately MeV electrons. We have assembled a suite of diagnostics to characterize such transfer, simultaneously fielding absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256 eV; spherically bent crystal imagers at 4.5 and 8 keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung, electron and proton spectrometers (along the same line of sight), and a picosecond optical probe interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following the laser-plasma interactions at extremely high intensities in both planar and conical targets. Together with accurate on-shot laser focal spot and prepulse characterization, these measurements are yielding new insights into energy coupling and are providing critical data for validating numerical particle-in-cell (PIC) and hybrid PIC simulation codes in an area crucial for fast ignition and other applications. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultrahigh intensity laser-plasma interactions are discussed.

4.
Phys Rev Lett ; 100(1): 015003, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-18232779

ABSTRACT

Metal foil targets were irradiated with 1 mum wavelength (lambda) laser pulses of 5 ps duration and focused intensities (I) of up to 4x10;{19} W cm;{-2}, giving values of both Ilambda;{2} and pulse duration comparable to those required for fast ignition inertial fusion. The divergence of the electrons accelerated into the target was determined from spatially resolved measurements of x-ray K_{alpha} emission and from transverse probing of the plasma formed on the back of the foils. Comparison of the divergence with other published data shows that it increases with Ilambda;{2} and is independent of pulse duration. Two-dimensional particle-in-cell simulations reproduce these results, indicating that it is a fundamental property of the laser-plasma interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...