Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37528062

ABSTRACT

Industrial biotechnology uses microbial cells to produce a wide range of products. While the genetic and molecular properties of these organisms are well understood, less is known about their mechanical properties. Previous work has established a test procedure for single yeast cells using a nanoindentation instrument equipped with a flat-punch probe, which allows single cells (Saccharomyces cerevisiae) to be compressed between two parallel surfaces. The resulting force-displacement curves clearly showed the bursting of the cells and were used to determine characteristics such as burst force and burst energy. Other studies have investigated the influence of growth conditions and measurement conditions on the mechanical characteristics. The recent study examined the mechanical characteristics according to the temperature during compression. Temperature from 0°C to 25°C has no significant effect on the micromechanical properties. Increasing the temperature up to 35°C causes a reduction in the strength of the cells. At even higher temperatures, up to 50°C, the burst force and burst energy increase significantly. A deformation geometry model was used to calculate the cell wall tensile strength as a function of temperature. The results of these studies may facilitate the identification of efficient conditions for cell disruption and product recovery in downstream biotechnological processes.


Subject(s)
Hot Temperature , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Temperature , Pressure , Biotechnology
2.
Int J Pharm X ; 6: 100196, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37448986

ABSTRACT

Understanding of generation, extent and location of thermomechanical stress in small-scale (< 3 g) ram and twin-screw melt-extrusion is crucial for mechanistic correlations to the stability of protein particles (lysozyme and BSA) in PEG-matrices. The aim of the study was to apply and correlate experimental and numerical approaches (1D and 3D) for the evaluation of extrusion process design on protein stability. The simulation of thermomechanical stress during extrusion raised the expectation of protein degradation and protein particle grinding during extrusion, especially when TSE was used. This was confirmed by experimental data on protein stability. Ram extrusion had the lowest impact on protein unfolding temperatures, whereas TSE showed significantly reduced unfolding temperatures, especially in combination with kneading elements containing screws. In TSE, the mechanical stress in the screws always exceeded the shear stress in the die, while mechanical stress within ram extrusion was generated in the die, only. As both extruder designs revealed homogeneously distributed protein particles over the cross section of the extrudates for all protein-loads (20-60%), the dispersive power of TSE revealed not to be decisive. Consequently, the ram extruder would be favored for the production of stable protein-loaded extrudates in small scale.

3.
Int J Biol Macromol ; 242(Pt 2): 124855, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37187417

ABSTRACT

Functional nanofibrils from globular proteins are usually formed by heating for several hours at pH 2.0, which induces acidic hydrolysis and consecutive self-association. The functional properties of these micro-metre-long anisotropic structures are promising for biodegradable biomaterials and food applications, but their stability at pH > 2.0 is low. The results presented here show that modified ß-lactoglobulin can also form nanofibrils by heating at neutral pH without prior acidic hydrolysis; the key is removing covalent disulfide bonds via precision fermentation. The aggregation behaviour of various recombinant ß-lactoglobulin variants was systemically studied at pH 3.5 and 7.0. The suppression of intra- and intermolecular disulfide bonds by eliminating one to three out of the five cysteines makes the non-covalent interactions more prevalent and allow for structural rearrangement. This stimulated the linear growth of worm-like aggregates. Full elimination of all five cysteines led to the transformation of worm-like aggregates into actual fibril structures (several hundreds of nanometres long) at pH 7.0. This understanding of the role of cysteine in protein-protein interactions will help to identify proteins and protein modifications to form functional aggregates at neutral pH.


Subject(s)
Amyloid , Lactoglobulins , Lactoglobulins/genetics , Lactoglobulins/chemistry , Amyloid/chemistry , Amyloidogenic Proteins , Hydrogen-Ion Concentration , Disulfides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...