Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(24): 241803, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33412014

ABSTRACT

We present constraints on the existence of weakly interacting massive particles (WIMPs) from an 11 kg d target exposure of the DAMIC experiment at the SNOLAB underground laboratory. The observed energy spectrum and spatial distribution of ionization events with electron-equivalent energies >200 eV_{ee} in the DAMIC CCDs are consistent with backgrounds from natural radioactivity. An excess of ionization events is observed above the analysis threshold of 50 eV_{ee}. While the origin of this low-energy excess requires further investigation, our data exclude spin-independent WIMP-nucleon scattering cross sections σ_{χ-n} as low as 3×10^{-41} cm^{2} for WIMPs with masses m_{χ} from 7 to 10 GeV c^{-2}. These results are the strongest constraints from a silicon target on the existence of WIMPs with m_{χ}<9 GeV c^{-2} and are directly relevant to any dark matter interpretation of the excess of nuclear-recoil events observed by the CDMS silicon experiment in 2013.

2.
Appl Radiat Isot ; 126: 185-187, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28318931

ABSTRACT

Low-background lead for radiation measurement shielding is often assayed for 210Pb to ensure acceptable backgrounds. Samples of lead assayed with a germanium spectrometer calibrated for bremsstrahlung-based assay of 210Pb provide a view into the 210Pb content of commercial lead in the U.S. (other than stockpiled Doe Run lead). Results suggest that the loss of lead smelting in the U.S. has eliminated the traditional supply of "low background" lead (~30Bqkg-1), and indicate current commercial supplies contain roughly an order of magnitude higher 210Pb levels.

3.
Appl Radiat Isot ; 126: 243-248, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28236555

ABSTRACT

This paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50× 39Ar in P10 standard is 3.6% (k=2).

4.
Appl Radiat Isot ; 126: 240-242, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28041679

ABSTRACT

PNNL has developed two low-background gamma-ray spectrometers in a new shallow underground laboratory, thereby significantly improving its ability to detect low levels of gamma-ray emitting fission or activation products in airborne particulate in samples from the IMS (International Monitoring System). The combination of cosmic veto panels, dry nitrogen gas to reduce radon and low background shielding results in a reduction of the background count rate by about a factor of 100 compared to detectors operating above ground at our laboratory.

5.
Appl Radiat Isot ; 109: 430-434, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26701655

ABSTRACT

Argon-37 is an environmental signature of an underground nuclear explosion. Producing and quantifying low-level (37)Ar standards is an important step in the development of sensitive field measurement instruments. This paper describes progress at Pacific Northwest National Laboratory in developing a process to generate and quantify low-level (37)Ar standards, which can be used to calibrate sensitive field systems at activities consistent with soil background levels. This paper presents a discussion of the measurement analysis, along with assumptions and uncertainty estimates.

6.
Appl Radiat Isot ; 81: 179-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23597417

ABSTRACT

Pacific Northwest National Laboratory (PNNL) is developing a capability to measure the absolute activity concentration of gaseous radionuclides using length-compensated proportional-counting. This capability will enable the validation of low-level calibration standards for use in PNNL's new shallow underground laboratory. Two sets of unequal length proportional counters have been fabricated; one set has been fabricated using ultra-low background (ULB) electroformed copper and a second set fabricated from Oxygen-Free High-Conductivity Copper (OFHC).


Subject(s)
Gases/chemistry , Radioisotopes/analysis , Scintillation Counting/instrumentation , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
7.
Appl Radiat Isot ; 81: 151-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23623763

ABSTRACT

A new ultra-low-background proportional counter was recently developed with an internal volume of 100 cm(3) and has been characterized at pressures from 1-10 atm with P-10 (90% Ar, 10% methane) gas. This design, along with a counting system providing event digitization and passive and active shielding, has been developed to complement a new shallow underground laboratory (30 m water-equivalent). Backgrounds and low-level reference materials have been measured, and system sensitivity for (37)Ar has been calculated.


Subject(s)
Argon/analysis , Gases/analysis , Laboratories , Radioisotopes/analysis , Scintillation Counting/instrumentation , Equipment Design , Equipment Failure Analysis , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity , United States
8.
Rev Sci Instrum ; 83(11): 113503, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23206058

ABSTRACT

Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

SELECTION OF CITATIONS
SEARCH DETAIL
...