Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 8: 89, 2017.
Article in English | MEDLINE | ID: mdl-28588509

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are the only effective pharmacological treatments for obsessive-compulsive disorder (OCD). Nonetheless, their generally limited efficacy, side-effects, and delayed onset of action require improved medications for this highly prevalent disorder. Preclinical and clinical findings have suggested serotonin2C (5-HT2C) receptors as a potential drug target. Data in rats and mice are presented here on the effects of a novel 5-HT2C receptor agonist ((3S)-3-Methyl-1-[4-(trifluoromethyl)-7-benzofuranyl]-piperazine) (CPD 1) with high potency and full efficacy at 5-HT2C receptors and less potency and partial agonism at 5-HT2A and 5-HT2B receptors. Effects of CPD 1 on consummatory (schedule-induced polydipsia in rats) and non-consummatory behaviors (marble-burying and nestlet-shredding in mice) that are repetitive and non-habituating were studied. We also evaluated the effects of CPD 1 in rats with isoproterenol- and deprivation-induced drinking in rats to compare with the polydipsia studies. The SSRIs, fluoxetine, and chlomipramine decreased the high rates of drinking in rats engendered by a schedule of intermittent food delivery (schedule-induced polydipsia). The effects of fluoxetine, but not of d-amphetamine, were prevented by the selective 5-HT2C receptor antagonist SB242084. The 5-HT2C receptor agonists Ro 60-0175 and CPD 1 also decreased drinking, but unlike the SSRIs and Ro 60-0175, CPD 1 dose-dependently decreased excessive drinking without affecting lever press responses that produced food. The effects of CPD 1 were prevented by SB242084. CPD 1 also suppressed drinking induced by isoproterenol and by water deprivation without affecting normative drinking behavior. CPD 1, like fluoxetine, also suppressed marble-burying and nestlet-shredding in mice at doses that did not affect rotarod performance or locomotor activity. The behavioral specificity of effects of CPD 1 against repetitive and excessive behaviors suggests a potential therapeutic application in OCD.

2.
J Med Chem ; 59(24): 10974-10993, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002967

ABSTRACT

As part of our ongoing efforts to identify novel ligands for the metabotropic glutamate 2 and 3 (mGlu2/3) receptors, we have incorporated substitution at the C3 and C4 positions of the (1S,2R,5R,6R)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid scaffold to generate mGlu2/3 antagonists. Exploration of this structure-activity relationship (SAR) led to the identification of (1S,2R,3S,4S,5R,6R)-2-amino-3-[(3,4-difluorophenyl)sulfanylmethyl]-4-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid hydrochloride (LY3020371·HCl, 19f), a potent, selective, and maximally efficacious mGlu2/3 antagonist. Further characterization of compound 19f binding to the human metabotropic 2 glutamate (hmGlu2) site was established by cocrystallization of this molecule with the amino terminal domain (ATD) of the hmGlu2 receptor protein. The resulting cocrystal structure revealed the specific ligand-protein interactions, which likely explain the high affinity of 19f for this site and support its functional mGlu2 antagonist pharmacology. Further characterization of 19f in vivo demonstrated an antidepressant-like signature in the mouse forced-swim test (mFST) assay when brain levels of this compound exceeded the cellular mGlu2 IC50 value.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Drug Discovery , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/chemistry , Brain/drug effects , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Cyclohexanes/pharmacology , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Motor Activity/drug effects , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/isolation & purification , Structure-Activity Relationship , Swimming
3.
Bioorg Med Chem Lett ; 26(23): 5663-5668, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27836401

ABSTRACT

Negative modulators of metabotropic glutamate 2 & 3 receptors demonstrate antidepressant-like activity in animal models and hold promise as novel therapeutic agents for the treatment of major depressive disorder. Herein we describe our efforts to prepare and optimize a series of conformationally constrained 3,4-disubstituted bicyclo[3.1.0]hexane glutamic acid analogs as orthosteric (glutamate site) mGlu2/3 receptor antagonists. This work led to the discovery of a highly potent and efficacious tool compound 18 (hmGlu2 IC50 46±14.2nM, hmGlu3 IC50=46.1±36.2nM). Compound 18 showed activity in the mouse forced swim test with a minimal effective dose (MED) of 1mg/kg ip. While in rat EEG studies it exhibited wake promoting effects at 3 and 10mg/kg ip without any significant effects on locomotor activity. Compound 18 thus represents a novel tool molecule for studying the impact of blocking mGlu2/3 receptors both in vitro and in vivo.


Subject(s)
Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Depressive Disorder, Major/drug therapy , Glutamic Acid/analogs & derivatives , Glutamic Acid/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Animals , Antidepressive Agents/pharmacokinetics , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/pharmacology , Cell Line , Depressive Disorder, Major/metabolism , Dogs , Glutamic Acid/pharmacokinetics , Haplorhini , Hexanes/chemistry , Hexanes/pharmacokinetics , Hexanes/pharmacology , Humans , Madin Darby Canine Kidney Cells , Mice , Rats , Receptors, Metabotropic Glutamate/metabolism
4.
J Pharmacol Exp Ther ; 336(1): 165-77, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20947638

ABSTRACT

The normalization of excessive glutamatergic neurotransmission through the activation of metabotropic glutamate 2 (mGlu2) receptors may have therapeutic potential in a variety of psychiatric disorders, including anxiety/depression and schizophrenia. Here, we characterize the pharmacological properties of N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a structurally novel, potent, and selective allosteric potentiator of human and rat mGlu2 receptors (EC(50) = 23 and 13 nM, respectively). THIIC produced anxiolytic-like efficacy in the rat stress-induced hyperthermia assay and the mouse stress-induced elevation of cerebellar cGMP and marble-burying assays. THIIC also produced robust activity in three assays that detect antidepressant-like activity, including the mouse forced-swim test, the rat differential reinforcement of low rate 72-s assay, and the rat dominant-submissive test, with a maximal response similar to that of imipramine. Effects of THIIC in the forced-swim test and marble burying were deleted in mGlu2 receptor null mice. Analysis of sleep electroencephalogram (EEG) showed that THIIC had a sleep-promoting profile with increased non-rapid eye movement (REM) and decreased REM sleep. THIIC also decreased the dark phase increase in extracellular histamine in the medial prefrontal cortex and decreased levels of the histamine metabolite tele-methylhistamine (t-MeHA) in rat cerebrospinal fluid. Collectively, these results indicate that the novel mGlu2-positive allosteric modulator THIIC has robust activity in models used to predict anxiolytic/antidepressant efficacy, substantiating, at least with this molecule, differentiation in the biological impact of mGlu2 potentiation versus mGlu2/3 orthosteric agonism. In addition, we provide evidence that sleep EEG and CSF t-MeHA might function as viable biomarker approaches to facilitate the translational development of THIIC and other mGlu2 potentiators.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Benzyl Compounds/pharmacology , Central Nervous System/drug effects , Central Nervous System/metabolism , Excitatory Amino Acid Agonists/pharmacology , Imidazoles/pharmacology , Receptors, Metabotropic Glutamate/agonists , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cell Line , Central Nervous System/chemistry , Cerebellum/chemistry , Cerebellum/drug effects , Cerebellum/metabolism , Drug Synergism , Humans , Male , Mice , Mice, Knockout , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...