Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 106(8): 2228-2238, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34978874

ABSTRACT

Meta-analysis was used to compare yield protection and nematode suppression provided by two seed-applied and two soil-applied nematicides against Meloidogyne incognita and Rotylenchulus reniformis on cotton across 3 years and several trial locations in the U.S. Cotton Belt. Nematicides consisted of thiodicarb- and fluopyram-treated seed, aldicarb and fluopyram applied in furrow, and combinations of the seed treatments and soil-applied fluopyram. The nematicides had no effect on nematode reproduction or root infection but had a significant impact on seed cotton yield response ([Formula: see text]), with an average increase of 176 and 197 kg/ha relative to the nontreated control in M. incognita and R. reniformis infested fields, respectively. However, because of significant variation in yield protection and nematode suppression by nematicides, five or six moderator variables (cultivar resistance [M. incognita only], nematode infestation level, nematicide treatment, application method, trial location, and growing season) were used depending on nematode species. In M. incognita-infested fields, greater yield protection was observed with nematicides applied in furrow and with seed-applied + in-furrow than with solo seed-applied nematicide applications. Most notable of these in-furrow nematicides were aldicarb and fluopyram (>131 g/ha) with or without a seed-applied nematicide compared with thiodicarb. In R. reniformis-infested fields, moderator variables provided no further explanation of the variation in yield response produced by nematicides. Furthermore, moderator variables provided little explanation of the variation in nematode suppression by nematicides in M. incognita- and R. reniformis-infested fields. The limited explanation by the moderator variables on the field efficacy of nematicides in M. incognita- and R. reniformis-infested fields demonstrates the difficulty of managing these pathogens with nonfumigant nematicides across the U.S. Cotton Belt.


Subject(s)
Antinematodal Agents , Tylenchoidea , Aldicarb/toxicity , Animals , Antinematodal Agents/toxicity , Benzamides/toxicity , Gossypium , Pyridines/toxicity , Seeds , Soil , Tylenchoidea/drug effects , Tylenchoidea/physiology , United States
2.
Plant Dis ; 103(8): 1835-1842, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31194618

ABSTRACT

This study employed single nucleotide polymorphisms (SNPs) to determine the genetic variability present in 26 isolates of Rotylenchulus reniformis from Louisiana, Mississippi, Arkansas, South Carolina, Georgia, Hawaii, and Alabama. Genomic DNA from reniform nematode was extracted and increased quantitatively using the process of whole genome amplification. More than 162 putative SNPs were identified, 31 of which were tested using a KASP kompetitive allele-specific PCR genotyping assay. Of the SNPs tested, 13, 17, and 19 SNPs revealed genetic variability within reniform nematode isolates from Louisiana, Mississippi, and Arkansas, respectively. Seven SNPs elucidated genetic differences among isolates of reniform nematode from Louisiana, Mississippi, and Arkansas. Eight SNPs determined genetic variability among individual isolates from South Carolina, Georgia, Hawaii, and Alabama. This study is the first to report genetic variability in geographic isolates of reniform nematode employing a SNP assay. This study also demonstrated that SNP markers can be used to evaluate isolates of R. reniformis and could be useful to assess their genetic diversity, origin, and distribution. Such information would be extremely useful in resistance breeding programs.


Subject(s)
Genetic Variation , Nematoda , Polymorphism, Single Nucleotide , Animals , DNA, Helminth/genetics , Nematoda/genetics , Plant Diseases/parasitology , United States
3.
Phytopathology ; 108(5): 532-541, 2018 May.
Article in English | MEDLINE | ID: mdl-29116883

ABSTRACT

The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) has emerged as the most important plant-parasitic nematode of cotton in the United States cotton belt. Success in the development of reniform nematode-resistant upland cotton cultivars (Gossypium hirsutum L.) has not been realized despite over three decades of breeding efforts. Research approaches ranging from conventional breeding to triple species hybrids to marker-assisted selection have been employed to introgress reniform nematode resistance from other species of cotton into upland cultivars. Reniform nematode-resistant breeding lines derived from G. longicalyx were developed in 2007. However, these breeding lines displayed stunting symptoms and a hypersensitive response to reniform nematode infection. Subsequent breeding efforts focused on G. barbadense, G. aridum, G. armoreanum, and other species that have a high level of resistance to reniform nematode. Marker-assisted selection has greatly improved screening of reniform nematode-resistant lines. The use of advanced molecular techniques such as CRISPER-Cas9 systems and alternative ways such as delivery of suitable "cry" proteins and specific double-stranded RNA to nematodes will assist in developing resistant cultivars of cotton. In spite of the efforts of cotton breeders and nematologists, successes are limited only to the development of reniform nematode-resistant breeding lines. In this article, we provide an overview of the approaches employed to develop reniform nematode-resistant upland cotton cultivars in the past, progress to date, major obstacles, and some promising future research activity.


Subject(s)
Disease Resistance/genetics , Gossypium/parasitology , Plant Diseases/parasitology , Tylenchoidea , Animals , CRISPR-Cas Systems , Gossypium/genetics , Plant Breeding , RNA, Double-Stranded/genetics
4.
J Nematol ; 40(1): 35-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-19259517

ABSTRACT

Rotylenchulus reniformis is a major problem confronting cotton production in the central part of the cotton belt of the United States of America. In this study, the hypothesis that natural antagonists in some cases are responsible for unusually low densities of the nematode in certain fields was tested by assaying soils from 22 selected fields for the presence of transferable agents in pots containing cotton plants. In one field, soil from four different depth ranges was tested. In the first of two types of assays, 1 part nematode infested soil was added to 9 parts test soil that was left untreated or autoclaved before mixing; this mixture was used to fill pots. In the second type of assay, 1 part test soil was added to 9 or 19 parts pasteurized fine sand, and nematodes were introduced in aqueous suspension. In three experiments representing both types of assay, transferable or autoclavable agent(s) from four fields in South Texas suppressed nematode populations by 48, 78, 90 and 95%. In one experiment, transferable agents in five fields in Louisiana suppressed populations from 37 to 66%. Identification and evaluation of these agents for biological control of R. reniformis merits further study.

SELECTION OF CITATIONS
SEARCH DETAIL
...