Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 225(0): 241-254, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33089859

ABSTRACT

The existence of correlated disorder in molecular frameworks is an obvious mechanism by which unusual cooperative phenomena might be realised. We show that the use of local-symmetry lowering approaches can allow ostensibly high-symmetry framework structures to harbour exotic disordered states often studied in the context of spin lattice models. These states exhibit strongly cooperative behaviour that might be exploited in anomalous mechanical, host/guest, and information storage behaviour. Our contribution focuses in particular on the concepts of (i) combinatorial mechanics, (ii) adaptive flexibility, and (iii) error-correcting data storage in framework materials.

2.
Chemistry ; 24(63): 16753-16756, 2018 Nov 13.
Article in English | MEDLINE | ID: mdl-30338587

ABSTRACT

The inthomycins are a family of structurally and biologically rich natural products isolated from Streptomyces species. Herein the implementation of a modular synthetic route is reported that has enabled the enantioselective synthesis of all three inthomycins. Key steps include Suzuki and Sonogashira cross-couplings and an enantioselective Kiyooka aldol reaction.

3.
Nat Commun ; 7: 10445, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26842772

ABSTRACT

Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic 'procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood 'waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics.

SELECTION OF CITATIONS
SEARCH DETAIL
...