Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 10(1): 34-44, 2019.
Article in English | MEDLINE | ID: mdl-30252590

ABSTRACT

Campylobacter concisus has been isolated from patients with gastroenteritis and inflammatory bowel disease (IBD), as well as healthy subjects. While strain differences may plausibly explain virulence differentials, an alternative hypothesis posits that the pathogenic potential of this species may depend on altered ecosystem conditions in the inflamed gut. One potential difference is oxygen availability, which is frequently increased under conditions of inflammation and is known to regulate bacterial virulence. Hence, we hypothesized that oxygen influences C. concisus physiology. We therefore characterized the effect of microaerophilic or anaerobic environments on C. concisus motility and biofilm formation, two important determinants of host colonization and dissemination. C. concisus isolates (n = 46) sourced from saliva, gut mucosal biopsies and feces of patients with IBD (n = 23), gastroenteritis (n = 8) and healthy subjects (n = 13), were used for this study. Capacity to form biofilms was determined using crystal violet assay, while assessment of dispersion through soft agar permitted motility to be assessed. No association existed between GI disease and either motility or biofilm forming capacity. Oral isolates exhibited significantly greater capacity for biofilm formation compared to fecal isolates (p<0.03), and showed a strong negative correlation between motility and biofilm formation (r = -0.7; p = 0.01). Motility significantly increased when strains were cultured under microaerophilic compared to anaerobic conditions (p<0.001). Increased biofilm formation under microaerophillic conditions was also observed for a subset of isolates. Hence, differences in oxygen availability appear to influence key physiological aspects of the opportunistic gastrointestinal pathogen C. concisus.


Subject(s)
Biofilms/growth & development , Campylobacter Infections/microbiology , Campylobacter/physiology , Gastroenteritis/microbiology , Oxygen/metabolism , Adolescent , Adult , Aerobiosis , Aged , Anaerobiosis , Campylobacter/growth & development , Campylobacter/metabolism , Female , Humans , Inflammatory Bowel Diseases/microbiology , Male , Middle Aged , Young Adult
2.
APMIS ; 125(3): 230-235, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28116789

ABSTRACT

Campylobacter concisus is an emerging pathogen associated with gastrointestinal disorders such as gastroenteritis and inflammatory bowel diseases (IBD), but the species is also found in healthy subjects. The heterogeneous genome of C. concisus increases the likelihood of varying virulence between strains. Flagella motility is a crucial virulence factor for the well-recognized Campylobacter jejuni; therefore, this study aimed to analyze the motility of C. concisus isolated from saliva, gut biopsies, and feces of patients with IBD, gastroenteritis, and healthy subjects. The motility zones of 63 isolates from 52 patients were measured after microaerobic growth in soft-agar plates for 72 hours. The motility of C. concisus was significantly lower than that of Campylobacter jejuni and Campylobacter fetus subsp. fetus. The motility of C. concisus varied between isolates (4-22 mm), but there was no statistical significant difference between isolates from IBD patients and healthy subjects (p = 0.14). A tendency of a larger motility zones was observed for IBD gut mucosa isolates, although it did not reach statistical significance (p = 0.13), and no difference was found between oral or fecal isolates between groups. In conclusion, the varying motility of C. concisus could not be related to disease outcome or colonization sites.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter/pathogenicity , Gastroenteritis/microbiology , Inflammatory Bowel Diseases/microbiology , Humans , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...